
New variants of Perfect Non-crossing Matchings∗

Ioannis Mantas1, Marko Savić2, and Hendrik Schrezenmaier3

1Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland,
ioannis.mantas@usi.ch

2Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad,
Serbia, marko.savic@dmi.uns.ac.rs

3Institut für Mathematik, Technische Universität Berlin, Germany,
schrezen@math.tu-berlin.de

Abstract

Given a set of points in the plane, we are interested in matching them with
straight line segments. We focus on perfect (all points are matched) non-crossing
(no two edges intersect) matchings. Apart from the well known MinMax variation,
where the length of the longest edge is minimized, we extend work by looking into
different optimization variants such as MaxMin, MinMin, and MaxMax. We
consider both the monochromatic and bichromatic versions of these problems and
by employing diverse techniques we provide efficient algorithms for various input
point configurations.

1 Introduction
In the matching problem, we are given a set of objects and the goal is to divide the set
into pairs such that no object belongs in two pairs. This simple problem is a classic in
graph theory, which has received a lot of attention, both in an abstract and in a geometric
setting. There are plenty of variants of the problem and there is a great plethora of results.

In this paper, we consider the geometric setting where, given a set P of 2n points in
the plane, the goal is to match points of P with straight line segments, in the sense that
each pair of points induces an edge of the matching. A matching is perfect if it consists
of exactly n pairs. A matching is non-crossing if all edges induced by the matching are

∗A preliminary extended abstract was presented at the 36th European Workshop on Computational
Geometry (EuroCG) 2020 and a shorter version of this work was presented at the 7th International
Conference on Algorithms and Discrete Applied Mathematics (CALDAM) 2021. I.M. was partially
supported by the Swiss National Science Foundation, project SNF 200021E-154387. M.S. was partly
supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia
(Grant No. 451-03-68/2020-14/200125), and the Provincial Secretariat for Higher Education and Scientific
Research, Province of Vojvodina. H.S. was partially supported by the German Research Foundation, DFG
grant FE-340/11-1.

1

ar
X

iv
:2

00
1.

03
25

2v
3

 [
cs

.C
G

]
 1

0
Fe

b
20

21

Figure 1: Optimal MinMin1, MaxMax1, MinMax1, and MaxMin1 matchings of
monochromatic points. The edges realizing the values of the matchings are highlighted.

pairwise disjoint. When there are no restrictions on which pairs of points can be matched,
the problem is called monochromatic. In the bichromatic variant, P is partitioned into
sets B and R of blue and red points, respectively, and only points of different colors are
allowed to be matched. When |B| = |R| = n, the point set P is called balanced.

1.1 Related work on perfect non-crossing matchings

Geometric matchings find applications in many diverse fields, with the most famous per-
haps being operations research, where it is known as the assignment problem. They are
useful in the field of shape matching, when shapes are represented by finite point sets, see
e.g., [29], and it is a fundamental problem in pattern recognition. Among others, geomet-
ric matchings appear in VLSI design problems, see e.g., [12], in computational biology,
see e.g., [11], and are used for map construction or comparison algorithms, see e.g., [16].

In most applications, requiring the matching to be non-crossing or perfect is rather
natural. Given a point set, monochromatic or balanced bichromatic in general position,
a perfect non-crossing matching always exists and it can be found in O(n log n) time by
recursively computing ham-sandwich cuts [20] or by using the algorithm of Hershberger
and Suri [18]. Many times though, it is not sufficient to have any perfect non-crossing
matching and the interest lies in finding such a matching with respect to some optimization
criterion.

A well-studied optimization criterion is minimizing the sum of lengths of all edges,
which we refer to as the MinSum variant. This is also known as the Euclidean assignment
problem or Euclidean matching, among others, in the literature. It is interesting, and not
hard to to see, that such a matching is always non-crossing. For monochromatic point
sets, an O(n1.5 log n)-time algorithm was given by Varadarajan [28]. For bichromatic
point sets, Kaplan et al. [19] recently presented an O(n2 log9 nλ6(log n))-time algorithm,
outperforming previous results [3, 27]. When points are in convex position, Marcotte
and Suri [21] solved the problem in O(n log n) time for both the monochromatic and
bichromatic settings.

Another popular goal is to minimize the length of the longest edge, which we refer to
as the MinMax variant. This is also known as the bottleneck matching in the literature.
Given a monochromatic point set, it was shown that finding such a matching is NP-
hard by Abu-Affash et al. [1]. This was accompanied by an O(n3)-time algorithm when

2

the points are in convex position. Recently this was improved to O(n2) time by Savić
and Stojaković [23]. For bichromatic point sets, Carlsson et al. [9] showed that finding a
MinMax matching is also NP-hard. Biniaz et al. [8] gave an O(n3)-time algorithm for
points in convex position and an O(n log n)-algorithm for points on a circle. These were
recently improved to O(n2) and O(n), respectively, by Savić and Stojaković [24].

Several other interesting optimization goals have been studied. For example, in the
fair matching problem, also known as the uniform matching, the goal is to minimize the
length difference between the longest and the shortest edge, and in the minimum deviation
matching, the difference between the length of the shortest edge and the average edge
length should be minimized. Both were solved in polynomial time by Efrat et al. [14, 15].
Alon et al. [5] studied the MaxSum variant, where the goal is to maximize the sum of
edge lengths. They conjectured that the problem is NP-hard, and gave an approximation
algorithm.

1.2 Problem variants considered and our contribution.

In this work, we continue exploring similar interesting optimization variants in different
settings and give efficient algorithms for constructing optimal matchings. We only deal
with perfect non-crossing matchings, so these properties will always be assumed from now
on, without further mention. We consider four optimization variants: MinMin where the
length of the shortest edge is minimized, MaxMax where the length of the longest edge is
maximized, MaxMin where the length of the shortest edge is maximized, and MinMax.
See Fig. 1 for an example of a point set and the four different optimal matchings.

To the best of our knowledge, except for MinMax, the other three variants have not
been considered before. Studying the MinMin and MaxMax variants is motivated by
the analysis of worst-case scenarios for problems where very short or long edges are unde-
sirable, but the selection of edges is not something that we can control. More generally,
the values of MinMin and MaxMax serve as lower and upper bounds on the length of
any feasible edge and can be helpful in estimating the quality of a matching, with respect
to some objective function. The MaxMin variant, similar to MinMax, resembles fair
matchings in the sense that all edges have similar lengths, analogously to the variants
studied in [14].

We study both the monochromatic and bichromatic versions of these variants. In
the bichromatic version, we assume that P is balanced. We denote the monochromatic
problems with the index 1, e.g. MinMin1, and the bichromatic problems with the index 2,
e.g. MinMin2.

These problems are examined in different point configurations. In Section 2, we con-
sider monochromatic points in general position. In Section 3, points are in convex position.
In Section 4, points lie on a circle. In Section 5, we consider doubly collinear bichromatic
point sets, where the blue points lie on one line and the red points on another line.

Table 1 summarizes the best-known running times for different matching variants
including the contributions of this paper. For each variant we study their structural
properties and combine diverse techniques with existing results in order to tackle as many

3

Table 1: Summary of results on the optimization of perfect non-crossing matchings. The
value of the matching can be obtained in the time not indicated with (*). The time
marked with (*) represents the extra time needed to also return a matching. h denotes
the size of the convex hull. ε denotes an arbitrarily small positive constant. Results
without reference are given in this paper.
Monochromatic MinMin1 MaxMax1 MinMax1 MaxMin1

General Position O(nh+ n log n), O(nh) +O(n log n)∗, NP-hard [1] ?
O(n1+ε + n2/3h4/3 log3 n) O(n1+ε + n2/3h4/3 log3 n)

Convex Position O(n) O(n) O(n2) [23] O(n3)
Points on circle O(n) O(n) O(n) O(n)

Bichromatic MinMin2 MaxMax2 MinMax2 MaxMin2

General Position ? ? NP-hard [9] ?
Convex Position O(n) O(n) O(n2) [24] O(n3)
Points on circle O(n) O(n) O(n) [24] O(n3)
Doubly collinear O(n) O(1) +O(n)∗ O(n4 log n) ?

configurations as possible. The various open questions that arise throughout the paper,
pave the way for further research in this family of problems.

2 Monochromatic points in general position
In this section, P is a monochromatic set of points in general position, where we assume
that no three points are collinear. We denote by CH(P) the boundary of the convex hull
of P , by h the number of vertices of CH(P), by q1, . . . , qh the counterclockwise ordering
of the vertices along CH(P), and by d(v, w) the Euclidean distance between two points v
and w. We call an edge (v, w) feasible, if there exists a matching which contains (v, w),
and infeasible otherwise.

The following lemma gives us a feasibility criterion for an edge (v, w).

Lemma 1. An edge (v, w) is infeasible if and only if (1) v, w ∈ CH(P) and (2) there is
an odd number of points on each side of (v, w).

Proof. Let l denote the line through the points v and w and let A,B be the subdivision
of P \ {v, w} induced by l. For the if-part, let v, w ∈ CH(P). Then each edge (a, b) with
a ∈ A, b ∈ B intersects (v, w) and thus cannot be in a matching with (v, w). If further
A,B have an odd number of points each, at least one point from each set will not be
matched if (v, w) is in the matching. Hence, (v, w) is infeasible.

For the only-if-part, let (v, w) be an infeasible edge and suppose that one of (1) and
(2) is not fulfilled. If (2) is not fulfilled, then A,B have an even number of points each.
Therefore, we can find matchings of A and B independently without intersecting (v, w).
Therefore, (v, w) is a feasible edge, a contradiction. If (1) is not fulfilled, then not both
of v, w are in CH(P). So, l crosses at least one edge (x, y) of CH(P), with x ∈ A, y ∈ B,

4

v

w y

l

A

B

x

(a)

v

w

l

y

x

(b) (c)
p

1

2

5

7

812

13

Figure 2: (a) Proof of Lemma 1. (b) Proof of Lemma 3. (c) A weak radial ordering.

see Fig. 2a. But then, both A \ {x} and B \ {y} contain an even number of points. Thus,
there exist matchings of A \ {x} and B \ {y}, which together with (v, w) and (x, y) form
a matching of P , a contradiction.

2.1 MinMin1 and MaxMax1 matchings in general position

The problems MinMin and MaxMax are equivalent to finding the extremal, shortest or
longest, feasible pair. A main challenge is to check the feasibility of an edge according to
Lemma 1. We propose two different approaches.

Using radial orderings. The radial ordering of a point p ∈ P is the counterclockwise
circular ordering of the points in P \ p by angle around p. It is well known that the
radial orderings of all p ∈ P can be computed in O(n2) total time using the dual line
arrangement of P , see e.g. [4, 6].

Given a subset A ⊆ P , we define the A-weak radial ordering of a point p ∈ P as
the radial ordering of p where the points from A that occur between two points from
A := P \A are given as an unordered set, see Figures 2b and 2c. We are interested in the
CH(P)-weak radial orderings of the points in CH(P). These are of interest, as they allow
us to check the feasibility of all pairs (qi, qj) of points qi, qj ∈ CH(P) in O(nh) total time
using Lemma 1.

Lemma 2. Given a set of points P and a subset A ⊆ P with |P | = n and |A| = k, the
A-weak radial orderings of all points in A can be computed in O(nk) time.

Proof. First, we compute the dual line arrangement LA of A in O(k2) time [4, 6]. We
denote the dual line of a point p by lp. For each edge e of LA, we initialize a set Xe := ∅,
also in O(k2) total time. Then, for each point p ∈ P \ A, we find the set Ep of edges
of LA that are intersected by lp and add p to all sets Xe with e ∈ Ep. Due to the zone
theorem [4] this takes O(k) time for each p.

Finally, we can read off the weak radial ordering of a point q ∈ A from LA and the
sets Xe in the following way: Let p1, . . . , pk−1 be the ordering of the points in A \ q
corresponding to the order of intersections of lq with the other lines in LA. Further, let ei
be the edge of LA between the intersections of lq with lpi and lpi+1

(with indices understood
modulo k − 1). Then the weak radial ordering of q is p1, Xe1 , p2, Xe2 , . . . , Xek−1

.

5

We use the feasibility criterion of Lemma 1 and the concept of weak radial orderings
to provide algorithms for MinMin1 and MaxMax1.

Theorem 1. If P is in general position, MinMin1 can be solved in O(nh+n log n) time.

Proof. We initially construct CH(P) in O(n log h) time [10]. Then, we compute the
CH(P)-weak radial orderings of the points in CH(P) in O(nh) total time using Lemma 2.
Now we look for the shortest feasible edge.

We first consider edges (v, w) with v /∈ CH(P) and we want to findm1 := min({ d(v, w) :
v ∈ P \ CH(P), w ∈ P }). By Lemma 1, such edges are always feasible. To find m1 we
use the fact that the nearest neighbor graph is a subgraph of the Delaunay triangulation,
meaning that for each v ∈ P , if w is the nearest point in P to v, then (v, w) is an edge
of the triangulation. We find m1 by finding the shortest edge among all edges incident
to some interior point in the Delaunay triangulation. This takes O(n log n) time, as the
triangulation can be constructed in O(n log n) time using standard algorithms and there
are O(n) edges to consider.

Now we consider edges (v, w) with both v, w ∈ CH(P) and we want to find m2 :=
min({ d(v, w) : v, w ∈ CH(P) }). Lemma 1 implies that an edge (qi, qi+1) is always feasible
and that an edge (qi, qj+1) is feasible if and only if (i) (qi, qj) is feasible and there is an odd
number of points between qj and qj+1 in the radial ordering of qi or (ii) (qi, qj) is infeasible
and there is an even number of points between qj and qj+1 in the radial ordering of qi.
Thus, we can find m2 in O(nh) time, using weak radial orderings. Hence, we can find the
overall minimum msol = min(m1,m2), in O(n log n+ nh), concluding the proof.

It is not hard to observe that the same algorithm but considering the maximum feasible
values for m1,m2 and msol, also solves MaxMax1 in O(nh + n log n) time. Using the
following lemma we can further improve the time complexity to O(nh).

Lemma 3. If (v, w) is a longest feasible edge, then one of v ∈ CH(P) or w ∈ CH(P).

Proof. Assume that both v, w /∈ CH(P). Let l be the line through v and w. Then l
intersects two edges of CH(P). Let (x, y) be the edge whose intersection point with l is
closer to w than to u, see Fig. 2b. One of the two angles between l and (x, y) in the
interior of CH(P) is at least π

2
. Let x be the endpoint of (x, y) on this side of l. Then

d(v, x) > d(v, w). Due to Lemma 1, the edge (v, x) is feasible and since it is longer that
(v, w), there is a contradiction.

Theorem 2. If P is in general position, MaxMax1 can be solved in O(nh) time.

Proof. The algorithm is similar to the MinMin1, described in Theorem 1, with two
changes: the minimizations of m1,m2,msol are replaced by maximizations and for m1

we consider edges (v, w) with v ∈ P \ CH(P) and w ∈ CH(P). This is sufficient due
to Lemma 3. This reduces the running time for finding m1 to O((n − h)h) by simply
comparing the distances of all (n − h)h pairs of points. Hence, the overall running time
is reduced to O((n− h)h+ nh) = O(nh).

6

Using halfplane range queries. Now we take another approach to decide the feasi-
bility of a pair of points from CH(P). The task of determining the number of points of a
given point set lying on one side of a given straight line is known as halfplane range query
and has been studied extensively over the last decades, see e.g., [2]. Using these results to
check the criterion of Lemma 1, we obtain the following algorithms that are more efficient
than those of Theorems 1 and 2, when h = Ω(nc) for some constant c > 0.

Theorem 3. Let P be in general position. Then MinMin1 and MaxMax1 can be solved
in O(n1+ε + n2/3h4/3 log3 n) time where ε > 0 is an arbitrary constant.

Proof. We show that the feasibility of all pairs of points of CH(P) can be decided in the
claimed running times. Then, with the aforementioned algorithm and an additional effort
of O(n log n) time, MinMin1 and MaxMax1 can be solved.

We distinguish two classes of values of h. Let h ≤ n1/4. According to [22], halfplane
range queries can be answered in O(n1/2) time after a preprocessing step costing O(n1+ε)
time. We have to do

(
h
2

)
= O(h2) queries, so the time needed for the queries is O(h2n1/2) =

O(n). Therefore the preprocessing step dominates the overall time needed, resulting in
O(n1+ε) total time.

Now let h ≥ n1/4. We set m = n2/3h4/3. Then n ≤ m ≤ n2 is satisfied, which
is required by [22] for the following to hold: Halfplane range queries can be answered
in O(n

m1/2 log3 m
n

) time after a preprocessing step costing O(n1+ε + m logε n) time. Thus
the time needed for the O(h2) queries is O(n2/3h4/3 log3 n) and for the preprocessing is
O(n1+ε + n2/3h4/3 logε n), so O(n1+ε + n2/3h4/3 log3 n) time overall. Combining the two
cases for h, the claim follows.

Note that given an extremal feasible edge (v, w), we can obtain a matching including
(v, w) in O(n log n) time as follows. Let the line through (v, w) separate P in two sets A,B.
If A,B have an even number of points each, we apply an O(n log n) time algorithm [18, 20]
to A and B separately. If they have an odd number of points, similar to the proof of
Lemma 1, there exists a feasible edge (x, y) of CH(P) with x ∈ A and y ∈ B and we
apply an O(n log n) algorithm to the sets A \ {x} and B \ {y}.

Remarks for this section. For the MinMin1 problem there is an Ω(n log n) lower
bound on the time complexity, even when h = O(1), via a reduction from the closest pair
of points problem: the point set is surrounded by a large triangle or quadrangle (to obtain
an even number of points in total) such that all pairs of points of the original point set
are feasible and the shortest edge of a MinMin1 matching consists of the closest pair of
points of the original point set. The complexity of the closest pair of points problem is
known to have a lower bound of Ω(n log n) via a reduction from the element distinctness
problem [7].

Regarding bichromatic point sets, it remains unknown if it is possible to verify in
polynomial time whether a given edge is feasible or not. A positive answer would imply
polynomial time algorithms for MinMin2 and MaxMax2. Finally, regarding MaxMin1
and MaxMin2, we believe that they are both NP-hard problems.

7

3 Points in convex position
In this section, we assume that points in P are in convex position and the counterclockwise
ordering of points along CH(P), p0, . . . , p2n−1, is given. To simplify the notation, we
address points by their indices, i.e., we refer to pi as i. Arithmetic operations with indices
are done modulo 2n. We call edges of the form (i, i + 1) boundary edges and we call the
remaining edges diagonals.

Regarding bichromatic point sets, an important concept which captures well the na-
ture of matchings in convex position is the theory of orbits [24]. More specifically, P is
partitioned into orbits. Each orbit is a a balanced sets of points, and the colors of the
points along the boundary of the orbit are alternating, see Fig. 3a. An important property
is that a bichromatic edge (b, r) is feasible if and only if b and r are in the same orbit.

When points are in convex position we can find an arbitrary matching in O(n) time.

Lemma 4. If P is in convex position, we can construct an arbitrary matching in O(n)
time, both in the monochromatic and bichromatic case.

Proof. In the monochromatic case, we can trivially pair all boundary edges, e.g. of the
form (2k, 2k+ 1). In the bichromatic case, we first calculate the orbits in O(n) time [24].
Then, we choose a color, e.g. red, and in each orbit, we match each red point to the
next blue point in the counterclockwise ordering along the boundary of this orbit. [24,
Property 20] guarantees that such edges do not cross.

We first present a general dynamic programming approach and then we give better
algorithms for the MinMin and MaxMax variants.

3.1 A dynamic programming approach

We can easily solve all four optimization variants in O(n3) time by a classic dynamic
programming approach which is also used in [1, 8, 9] for MinMax problems. We briefly
explain this approach for completeness.

Let Fi be the set of points that point i induces a feasible edge with. In the monochro-
matic case, an edge (i, j) is feasible if and only if i + j is an odd number [1]. In the
bichromatic case (i, j) is feasible if and only if {i, . . . , j} is balanced [8, 9, 24].

Let m1,m2 ∈ {min,max} be the two optimization functions we use, e.g., if m1 = min
and m2 = max, then we are dealing with the MinMax problem.

The optimal solution restricted to {i, . . . , j} can be recursively expressed as

M [i, j] = m1
k∈{i+1,j}∩Fi

m2{d(i, k),M [i+ 1, k − 1],M [k + 1, j]} .

To determine whether an edge (i, k) is feasible in the bichromatic case, we maintain
the number of red and blue vertices encountered while iterating from i + 1 to j. Thus,
the total time used for calculating the table M is O(n3).

8

(a) (b) (c)

Figure 3: MinMin2 for P in convex position. (a) Find orbits. (b) Find the shortest
edge between the blue and red polygon of an orbit. (c) Extend to a perfect matching.

3.2 MinMin and MaxMax matchings in convex position

We make use of the following two algorithms. Given two convex polygons P and Q,
Toussaint’s algorithm [26] finds in O(|P |+ |Q|) time the vertices that realize the minimum
distance between P and Q. Analogously, Edelsbrunner’s algorithm [13] finds in O(|P | +
|Q|) time the vertices that realize the maximum distance between P and Q.

Theorem 4. If P is convex, MinMin1 and MaxMax1 can be solved in O(n) time.

Proof. A pair (i, j) is feasible if and only if i and j are of different parity. This suggests
that we can split P into two (convex) sets, Podd and Peven, one containing the even and
the other containing the odd indices. Then, any edge (v, w) with v ∈ Peven and w ∈ Podd

is feasible. We now can apply Toussaint’s algorithm [26] for MinMin1 or Edelsbrunner’s
algorithm [13] for MaxMax1. All steps can be done in O(n) time.

We can obtain the same time complexity for bichromatic point sets, by combining the
monochromatic algorithm with the theory of orbits as follows.

Theorem 5. If P is convex, MinMin2 and MaxMax2 can be solved in O(n) time.

Proof. We first compute all orbits in O(n) time [24]. Due to the alternation of red and
blue points along the boundary of the orbits, a single orbit can be considered as a set of
points in the monochromatic setting, with respect to the feasibility of the edges.

Thus, for MinMin2, we can select for each orbit, the shortest edge in O(n) time using
Theorem 4. The shortest edge out of all these selected edges is the shortest overall feasible
edge of P , see Fig. 3b. Selecting the maximum edges instead solves MaxMax2.

We remark that we can construct, in O(n) time, optimal matchings from Theorems 4
and 5 after finding an extremal feasible edge (i, j), by simply applying Lemma 4 to the
sets {i+ 1, . . . , j − 1} and {j + 1, . . . , i− 1}, see Fig. 3c.

Remarks for this section. We believe that o(n3)-time algorithms can be devised for
MaxMin by using some ideas similar to those used for MinMax in [23, 24].

9

i

j

(a)
i

j

i− 1
j + 1

(b) (c)
i

i− 1

j

i+ 1

i− 2
j + 1

Figure 4: (a) The decreasing chords property. (b) A forbidden chain. (c) Proof of
Lemma 6. (Forbidden edges are shown dashed and allowed edges are shown solid.)

4 Points on a circle
In this section, we assume that all points of P lie on a circle. Obviously, the points are
also in convex position, so all the results from Section 3 also apply here. We present
algorithms which either achieve a better time complexity or are significantly simpler. We
use the notation from Section 3.

In addition to the convex position, the results in this section rely on a property of
point sets lying on a circle, which we call the decreasing chords property. A point set P
has this property if, for any edge (i, j), it happens that for at least one of its sides, all the
possible edges between two points on that side are not longer than (i, j) itself, see Fig. 4a.

Due to the decreasing chords property, we can easily infer the following.

Lemma 5. Any shortest edge of a matching on P is a boundary edge.

4.1 MaxMin1 matching on a circle

Lemma 5 suggests an approach for MaxMin problems by forbidding short boundary edges
and checking whether we can find a matching without them.

Let some boundary edges be forbidden and the remaining be allowed. A forbidden
chain is a maximal sequence of consecutive forbidden edges. A forbidden chain has
endpoints i and j if edges (i, i + 1), . . . , (j − 1, j) are forbidden and edges (i − 1, i) and
(j, j + 1) are allowed, see Fig. 4b.

Lemma 6. There exists a matching without the forbidden edges if and only if l < n,
where l is the length of a longest forbidden chain.

Proof. If the boundary edges are either all forbidden or all allowed, then the statement
trivially holds. So, let us that assume there exists at least one forbidden and at least one
allowed boundary edge.

Consider a forbidden chain of length l which has endpoints i and j. First, we assume
that l ≥ n. Then, at least one matched pair (a, b) has both endpoints in {i, . . . , j}. Thus,
either (a, b) is a forbidden boundary edge, or it splits P in a way that all points on one
side of (a, b) lie completely in {i, . . . , j}. So, there exists a matched boundary edge inside
{i, . . . , j} and, thus, a matching without forbidden edges does not exist.

10

Now let us assume that l < n. We construct a matching without using forbidden
edges with a recursive approach. We match the pair (i − 1, i) and consider the set P ′ =
P \ {i − 1, i}, see Fig. 4c. In P ′, (i − 2, i + 1) is an allowed boundary edge since it is a
diagonal in P . We show that P ′ can be matched by showing that the condition of the
lemma holds for P ′.

Let i′ and j′ be the endpoints of a longest forbidden chain in P ′, going counterclockwise
from i′ to j′, and let l′ be its length. If l′ < n − 1, a matching of P ′ without forbidden
edges can be computed recursively. Otherwise, if l′ ≥ n − 1, from l′ ≤ l < n we infer
that l′ = l = n − 1. Since l = l′, the new longest forbidden chain is disjoint from
{i+ 1, . . . , j}, so it is contained in {j + 1, . . . , i− 2}, see Fig. 4c. But since |P ′| = 2n− 2
and |{i + 1, . . . , j}| = n − 1, then |{j + 1, . . . , i − 2}| = n − 1 and thus l′ < n − 1, a
contradiction.

MaxMin is equivalent to finding the largest value µ such that there exists a matching
with all edges of length at least µ. Due to Lemma 5, it suffices to search for µ among
the lengths of the boundary edges. By Lemma 6, this means that we need to find the
maximal length µ of a boundary edge such that there are no n consecutive boundary
edges all shorter than µ. An obvious way to find µ is to employ binary search over the
boundary edge lengths and check at each step whether the condition is satisfied or not,
which yields an O(n log n)-time algorithm.

A faster approach to finding µ is as follows. Consider all 2n sets of n consecutive
boundary edges and associate to each set the longest edge in it. Then, out of the 2n
longest edges, we search for the shortest one. This can be done in O(n) time by using a
data structure for range maximum query, see e.g. [17]. However, our approach fits under
the more restricted sliding window maximum problem, for which several simple optimal
algorithms are known, see e.g. [25].

Theorem 6. If P lies on a circle, MaxMin1 can be solved in O(n) time.

Proof. In sliding window maximum algorithm we maintain the window, which is a se-
quence of numbers that we can modify in each step either by adding a new number to it,
or by removing the least recently added number, if the sequence is not empty. After each
operation the maximum element currently in the window is reported. This is all done in
aggregate O(n) time, where n is the number of used numbers.

For our application, we first fill the window with edges (0, 1), (1, 2), . . . , (n− 1, n), in
that order, and then, in the k-th step (k starting from 0), we modify the window by
removing the edge (k, k+1) and adding the edge (n+k, n+k+1). We repeat this until k
reaches 2n−1, that is, until we go around the circle one full time, asking for the maximum
value in the window after each step. Following the previous discussion, the result we are
looking for will be the minimum of all these maximums.

Using Lemma 7, we can also construct an optimal matching within the same time
complexity, as the following lemma states.

11

Lemma 7. Given a value µ > 0, a matching consisting of edges of length at least µ can
be constructed in O(n) time if it exists.

Proof. Since P fulfills the decreasing chords property, the shortest edge (or one of the
shortest edges if there is more than one) of each matching is a boundary edge. Therefore,
a matching consists of edges of length at least µ if and only if the lengths of all its boundary
edges are at least µ. We forbid all boundary edges shorter than µ. If the longest chain of
forbidden boundary edges has length at least n, then the wanted matching does not exist
due to Lemma 6. Otherwise, we apply the process described in the proof of Lemma 6.
However, we need to be careful about how to iteratively find the edge we want to match
and remove in each iteration so that the whole construction takes only O(n) time.

First we note that in the process described in the proof of Lemma 6 chains never
merge. In each step we reduce the length of exactly one or exactly two chains by 1. When
the length of a chain is reduced to 0, the chain disappears. So, all the chains maintain
their identity throughout the process. For each chain we keep track of its length, and its
first endpoint. Also, since we will be removing points, for each point we keep track of the
points preceding and following it.

At the beginning, we calculate the length of all the chains and initialize an array of
buckets, where bucket b is a list of all the chains of length exactly b. We go through the
array starting from the bucket n− 1 (all buckets above that are empty, by Lemma 6) and
move down towards the bucket 0. In each step we select the first chain from the current
bucket, and check if its length matches the index of the bucket it is in. If it does not,
then we move it to the correct bucket, and proceed. If they do match then the selected
chain is the chain of the maximum length. If i is the first endpoint of the selected chain,
we add the edge between i and the point preceding i to the matching. In constant time
we can update everything that we are keeping track of, and continue.

After we reach bucket 0, there are no chains left, so we are left with a set of points
where all edges are allowed. We can match them in linear time, by matching every second
edge.

4.2 Other matchings on a circle

Theorem 7. If P lies on a circle, MinMax1 can be solved in O(n) time.

Proof. We show that there exists a MinMax1 matching using only boundary edges.
Suppose we have a MinMax1 matching M containing a diagonal (i, j). Assume, without
loss of generality, that all edges with endpoints in {i, . . . , j} are at most as long as (i, j).
Now we construct a new matching M ′ by taking all matched pairs in M that are outside
of {i, . . . , j} together with edges (i, i+ 1), (i+ 2, i+ 3), . . . , (j− 1, j). The longest edge of
M ′ is not longer than the longest edge of M , proving our claim.

There are only two different matchings made only of boundary edges and in O(n) time
we can choose the one with the shorter longest edge.

Points on a circle are in convex position, so, both MinMin1 and MinMin2 can be
found in O(n) time using Theorems 4 and 5. Instead, we can do it much simpler by finding

12

xlB

lR

(a)

small
sector

big
sector

small
sector

big
sector

r

b

r′

(a)

x
lB

lR

(b)

r b

(b, x) ∩ P

(r→x→) ∩ P

Figure 5: (a) A doubly collinear set of points. (b) A feasible edge. (c) An infeasible edge.

the shortest feasible boundary edge. By Lemma 5, the shortest edge of a matching is a
boundary edge in both settings. This can be then extended to a perfect matching using
Lemma 4.

Remarks for this section. Results of this section rely only on the decreasing chords
property, so they generalize to any point set with this property, e.g. points on an ellipse
of eccentricity at most 1/

√
2 or points on a single branch of hyperbola of eccentricity at

least
√

2. Finally, we believe that a combination of the concept of orbits with Lemma 5
can result in o(n3)-time algorithms for MaxMin2 as well.

5 Doubly collinear points
A bichromatic point set P is doubly collinear if the blue points lie on a line lB and the red
points lie on a line lR. We assume that lB and lR are not parallel and that the ordering
of the points along each line is given. Let x = lB ∩ lR and assume, for simplicity, that
x /∈ P . Figure 5a shows this setting.

Let l ∈ {lB, lR}. Then, for two points a, b on l, we denote by (a, b) the open line segment
connecting a and b. Further, if a 6= x, we denote by (a→x→), x···(a→) ⊂ l the open half-
lines starting at a that contain x and do not contain x, respectively. If we replace round
brackets by square brackets, e.g. in x···[a→), (a, b], or [a, b], the corresponding endpoint is
contained in the set.

Both lines lB and lR are split at x into two half-lines. The lines lB, lR split the plane
into four sectors, each bounded by two of the half-lines. We call a sector small, if its angle
is acute, and big otherwise. Note that a point set on the boundary of a big sector has the
decreasing chords property.

The following lemma gives us a feasibility criterion for an edge (r, b), see Figs. 5b and
5c, which can be checked in O(1) time if the indices of the two points and the position of
x are known. It also indicates an algorithm which, given a feasible edge (r, b), returns a
matching containing (r, b) in O(n) time.

Lemma 8. An edge (r, b) is feasible if and only if |(r, x)∩P | ≤ |(b→x→)∩P | and |(b, x)∩
P | ≤ |(r→x→) ∩ P |.

13

Proof. For the only-if-part, note that, if r and b are matched, then the points in (r, x)∩P
cannot be matched with the points in x···(b→) ∩ P since this would yield a crossing with
(r, b). Therefore, the points in (r, x)∩P have to be matched with the points in (b→x→)∩P
and, hence, |(r, x)∩P | ≤ |(b→x→)∩P |. The inequality |(b, x)∩P | ≤ |(r→x→)∩P | follows
by exchanging the colors red and blue in the argument.

For the if-part, we will show that if the two inequalities are satisfied, then we can
construct a matching M containing the edge (r, b). We start by adding (r, b) to M . Then
we distinguish three cases. If |(r, x) ∩ P | = |(b, x) ∩ P |, we add the unique non-crossing
matching of (r, x)∩P and (b, x)∩P to M . Then no edge between two unmatched points
intersects an edge of M . Hence, we can add an arbitrary non-crossing matching of the
remaining points to M . If |(r, x)∩P | < |(b, x)∩P |, let r′ ∈ (r→x→)∩P be the point such
that |(r, r′]∩P | = |(b, x)∩P |, see Fig. 5b. This point exists since |(b, x)∩P | ≤ |(r→x→)∩P |.
We add an arbitrary non-crossing matching of (r, r′] ∩ P and (b, x) ∩ P to M . Then, as
in the previous case, no possible edge between the unmatched points intersects an edge
of M and, hence, we can add an arbitrary non-crossing matching of the remaining points
to M . If |(r, x) ∩ P | > |(b, x) ∩ P |, the construction is symmetric to the second case.

5.1 MinMin2 and MaxMax2 matchings in doubly collinear point
sets

Let l′R and l′B be a red and a blue half-line, respectively. The following lemma is a direct
consequence of Lemma 8 and allows us to find for each point in l′R ∩ P the closest point
in l′B ∩ P it induces a feasible edge with in O(n) total time.

Lemma 9. Let r ∈ R and r′ ∈ x···(r→) ∩ P . Let b, b′ ∈ l′B ∩ P be closest to r and r′,
respectively, such that (r, b) and (r′, b′) are feasible. Then b′ ∈ x···[b→) ∩ P .

Proof. Suppose that b′ ∈ (b→x→) ∩ P . Since r′ ∈ x···(r→) ∩ P , we have |(r, x) ∩ P | <
|(r′, x)∩P |. Since (r′, b′) is a feasible edge, we have |(r′, x)∩P | ≤ |(b′→x→)∩P | by Lemma 8.
Together, this gives |(r, x) ∩ P | < |(b′→x→) ∩ P |. Similarly, we obtain |(b′, x) ∩ P | <
|(r→x→) ∩ P |. Therefore, due to Lemma 8, (r, b′) is a feasible edge. Analogously, we can
show that (r′, b) is a feasible edge.

Since (r, b) and (r′, b′) are crossing edges, we have d(r, b′) + d(r′, b) < d(r, b) + d(r′, b′).
Hence, d(r, b′) < d(r, b) or d(r′, b) < d(r′, b′). Since (r, b′) and (r′, b) are feasible edges, the
former is a contradiction to the minimality of (r, b) and the latter is a contradiction to
the minimality of (r′, b′).

Theorem 8. If P is doubly collinear, MinMin2 can be solved in O(n) time.

Proof. Using Lemma 9, we can find for each pair l′R, l′B of half-lines of lR and lB, respec-
tively, the closest points of all points of l′R∩P in l′B∩P and the closest points of all points
of l′B ∩ P in l′R ∩ P they induce a feasible edge with in O(n) time. This gives a linear
number of candidate edges for the shortest feasible edge and then the minimum can be
computed in O(n) time.

14

B−

(a)

B+r1

r7

b−1b−4 b+3b+1· · · · · ·

··
·

(b)

r3
M3

Figure 6: (a) A one-sided doubly collinear point set. (b) An example of a matching Mk.

With the following lemma we can find a longest feasible edge in O(1) time. We call a
point p ∈ P an extremal point if |x···(p→) ∩ P | = 0.

Lemma 10. The longest edge between points in R and B is realized by a pair of extremal
points.

Proof. Let (r, b) be a longest edge between R and B and assume that one of them, say b, is
not an extremal point. The distance function between r and lB is monotone increasing in
on of the two direction from b. Let b′ be the next point of B on lB after b in this direction.
Then d(r, b′) > d(r, b), in contradiction to the assumption that (r, b) is a longest edge.

Theorem 9. If P is doubly collinear, MaxMax2 can be solved in O(1) time.

Proof. Using Lemma 10, we obtain at most four candidates for the longest edge. Since
all of them are in the boundary of the convex hull of P , they are all feasible. Thus, we
only have to find their maximum in O(1) time.

5.2 MinMax2 and MaxMin2 matchings in doubly collinear point
sets

One-sided case. Here we consider the one-sided doubly collinear case, where all red
points are on the same side of lB, see Fig. 6. Since in this case the extremal red point
must be matched with one of the two extremal blue points, all four optimization variants
can be solved in O(n2) time by dynamic programming.

Theorem 10. If P is one-sided doubly collinear, MinMax2 and MaxMin2 can be solved
in O(n2) time.

Proof. Let B− and B+ be the sets of blue points on the two half-lines of lB. We label
the points of B− as b−1 , . . . , b

−
|B−|, the points of B+ as b+1 , . . . , b

+
|B+|, and the red points as

r1, . . . rn, all three enumerations starting from the point nearest to x and going away from
it, see Fig. 6a.

We present a dynamic programming algorithm which solves all optimization problems,
MinMin2, MinMax2, MaxMin2, and MaxMax2, for the one-sided case. Let m1,m2 ∈
{min,max} be the two optimization functions we use, e.g., if m1 = min and m2 = max,
then we are dealing with the MinMax2 problem.

15

Let Sn−,n+ be the optimal solution to the m1 m2 problem where we are restricted to
the first n− points of B−, the first n+ points of B+, and the first n− + n+ red points.
The red point farthest from x must be connected to one of the two extremal blue points,
which gives us the recurrence

Sn−,n+ = m1{m2{d(b−n− , rn−+n+), Sn−−1,n+},m2{d(b+n+ , rn−+n+), Sn−,n+−1}} .

Using this formula we can compute the solutions to all subproblems in O(n2) time.
Constructing an optimal matching is easily done in O(n) time once we have all Sn−,n+

values.

To construct a faster algorithm for MinMax2, we notice that there exists (also in
the two-sided case) an optimal matching of a special form. It can be obtained from an
arbitrary optimal matching by applying local changes that do not change the objective
value.

Lemma 11. There exists an optimal matching for MinMax2 of the following form. For
each half-line l′, the points of l′ ∩ P that are matched in the small incident sector are
consecutive points, see Fig. 8c.

Proof. LetM be an optimal MinMax2 matching. Let l′R be one of the red half-lines. Let
r be a point in l′R ∩ P , let b be the point r is matched with, and assume that (r, b) lies
in a small sector. Further, let r1, r2 6= r be two consecutive points in (x, r) with r1 closer
to x than r2. Let b1, b2 be the points that r1, r2 are matched with in M , respectively,
and assume that (r1, b1) lies in a small sector and (r2, b2) in a big sector. Since r1 and r2
are consecutive points, replacing (r1, b1), (r2, b2) in M by (r1, b2), (r2, b1) does not produce
any crossing edges. We will show that this replacement also does not increase the length
of a longest edge of the matching. Because of the decreasing chords property of the big
sector, d(r1, b2) < d(r2, b2). For the edge (r2, b1) we distinguish three cases, see Fig. 7. (i)
If the angle b2b1r2 is obtuse, then d(r2, b1) < d(r2, b2). (ii) If the angle b1r2r1 is obtuse,
then d(r2, b1) < d(r1, b1). (iii) If both angles are acute or right, then d(r2, b1) < d(r, b).

≥ π
2

r
r2

r1

b b1 b2

≥ π
2

r

r2
r1

b b1 b2

≤ π
2

≤ π
2

r

r2

r1

b b1 b2

Figure 7: The three cases of the proof of Lemma 11.

By repeatedly applying these swaps we can transform M into an optimal matching
that fulfills the desired property on the half-line l′R. If in M the property was already
fulfilled on another half-line, it is still fulfilled there in the new matching. Hence, repeating
this swapping process on the other half-lines yields an optimal matching of the desired
form.

16

(c)

(b) (c)

Figure 8: Special types of optimal matchings (a) for MinMax2, (b) for MinMax2 and
MaxMin2 if α = π

2
, and (c) for MinMax2 if α < π

4
.

Theorem 11. If P is one-sided doubly collinear, MinMax2 can be solved in O(n log n)
time.

Proof. We use the notation of the proof of Theorem 10. Suppose |B−| > 0 and |B+| > 0
(otherwise there is only one possible matching, easily constructed in O(n) time). Without
loss of generality, suppose that the sector incident to B+ is big, i.e., ∠r1xb−1 ≤ ∠b+1 xr1.

For k ∈ {1, . . . , n − |B−| + 1}, let Mk be the matching comprised of the small sector
edges b−i rk+i−1, i ∈ {1, . . . , |B−|}, and with all other points matched in the only possible
way through the big sector, see Fig. 6b. By Lemma 11 there is an s such that Ms is an
optimal matching.

Note that, for all k ∈ {1, . . . , n − |B−|}, the longest edge of Mk in the big sector is
b+|B+|rn and that the longest edge of Mn−|B−|+1 in the big sector is b+|B+|rn−|B−|. For a
matchingM , we denote byM ′ the subset ofM consisting of the edges in the small sector.
We set max(M ′) = max{ d(v, w) : (v, w) ∈M ′ }. Let k∗ ∈ {1, . . . , n− |B−|} be the index
such that max(M ′

k∗) is minimal. Then Mk∗ and Mn−|B−|+1 are the only candidates for
the optimal MinMax2 matching.

Let j be such that b−j rk+j−1 is the longest edge in M ′
k. If ∠b−j rk+j−1x is obtuse then

max(M ′
k) = d(b−j , rk+j−1) < d(b−j , rl+j−1) ≤ max(M ′

l) for all l < k. If the angle is acute,
the same holds for all l > k. This observation allows us to find the k ∈ {1, . . . , n −
|B−|} minimizing max(M ′

k) using binary search in O(|B−| log(n−|B−|+1)) = O(n log n)
time.

General case. We return to general doubly collinear matchings and consider the Min-
Max2 problem. By only considering matchings as described in Lemma 11, enumerating
all possible choices for the decision which blue point is matched through which sector, and
applying Theorem 11 for the two resulting one-sided subproblems, we obtain the following
result.

Theorem 12. If P is doubly collinear, MinMax2 can be solved in O(n4 log n) time.

Proof. It suffices to consider matchings of the form described in Lemma 11. Let l′B be one
of the blue half-lines. We iterate through all O(n) choices of how many points of l′B are

17

matched through the incident small sector. This choice implies for the three other half-
lines how many of their points are matched through their incident small sector. Then, for
each of the blue half-lines, we iterate through all O(n) choices of consecutive subsets of
their points of the desired size for the set of points that are matched through the incident
small sector. Finally, for each of these O(n3) cases, we apply the algorithm of Theorem 11
to the two one-sided subproblems with only one red half-line in O(n log n) time. Taking
the minimum of the optimal solutions of all these cases yields the optimal solution of the
original problem in total O(n4 log n) time.

Special angles of intersection. Finally, we consider special values for the angle of
intersection α of lB and lR. By proving the existence of optimal matchings of a special
form, we derive improved algorithms for these cases.

Lemma 12. If α = π
2
, for MinMax2 and MaxMin2 there exist optimal matchings of

the following form. Each of the four half-lines is cut into two parts and all points in such
a part are matched to points of the same half-line, see Fig. 8b.

Proof. Let M be an optimal MinMax2 matching. Let l′R be one of the blue half-lines.
Let r be the point in l′R ∩ P farthest from x. Further, let r1, r2 6= r be two consecutive
points in l′R ∩ P with r1 closer to x than r2. Let b, b1, b2 be the points that r, r1, r2 are
matched with in M , respectively. Assume that b1, b are on the same blue half-line and
b2 is on the other blue half-line. Figure 9a shows this situation. Then swapping the
edges (b1, r1), (b2, r2) in M with the edges (b1, r2), (b2, r1) does not increase the length
of a longest edge of M since d(b1, r2) < d(b, r) and d(b2, r1) < d(b2, r2). Therefore, the
matching is still an optimal MinMax2 matching after the swap. By repeatedly applying
these swaps we can transform M into an optimal MinMax2 matching that fulfills the
desired property on the half-line l′R. If in M the property was already fulfilled on another
half-line, it is still fulfilled there in the new matching. Hence, repeating this swapping
process on the other half-lines yields an optimal MinMax2 matching of the desired form.
The proof for MaxMin2 is analogous.

Theorem 13. If α = π
2
, MinMax2 and MaxMin2 can be solved in O(n) time.

Proof. We only consider matchings of the form as described in Lemma 12. We will show
that there are only O(n) matchings of this form and that the value of each of these
matchings can be determined in O(1) time.

Each half-line is split into two parts. We decide for each half-line independently the
points of which of these two parts are matched with the points of which of the two half-
lines of the other color. There are 24 = O(1) possibilities. If we now decide for one of
the four half-lines between which two points to split it, the matching is fixed (the choice
might turn out to be infeasible). There are at most n + 1 = O(n) possibilities for this
split. Since, for each sector, the shortest edge is the edge closest to x and the longest edge
is the edge farthest from x, the value of this matching can be found by computing and
comparing the lengths of at most 4 = O(1) edges.

18

r

bb2 b1

r2

r1

(a)

β

b1 b2

r1

r2

(b)

β

b1

r1

r2

b2 (c)

Figure 9: (a) The situation of the proof of Lemma 12. (b) The situation of the proof of
Lemma 13 with β ≤ π

2
. (c) The situation of the proof of Lemma 13 with β ≥ π

2
.

Lemma 13. If α ≤ π
4
, there exists an optimal MinMax2 matching of the following form.

Each of the four half-lines is split into an inner and an outer part, where the inner part
is closer to x, and points from an inner (outer) part are matched through a big (small)
sector, see Fig. 8c.

Proof. Let M be an optimal MinMax2 matching. Let l′R be one of the blue half-lines.
Let r1, r2 be two consecutive points in l′R ∩P with r1 closer to x than r2. Let b1, b2 be the
points that r1, r2 are matched with in M , respectively. Assume that the edge (b1, r1) lies
in a small sector and that the edge (b2, r2) lies in a big sector. Let β < π be the angle
between the line segments [r2, b1] and [r2, x]. If β is acute (Fig. 9b shows this situation),
we have d(r2, b1) ≤ d(r2, x) ≤ d(r2, b2). For the first inequality, we use that α ≤ π

4
.

If β is obtuse (Fig. 9c shows this situation), we have d(r2, b1) ≤ d(r1, b1). Further, we
have d(r1, b2) < d(r2, b2). Therefore, swapping the edges (b1, r1), (b2, r2) in M with the
edges (b1, r2), (b2, r1) does not increase the length of a longest edge of M . Since r1, r2 are
consecutive points, the swap also does not produce crossing edges. Hence, the matching is
still an optimal MinMax2 matching after the swap. By repeatedly applying these swaps
we can transformM into an optimal MinMax2 matching that fulfills the desired property
on the half-line l′R. If in M the property was already fulfilled on another half-line, it is
still fulfilled there in the new matching. Hence, repeating this swapping process on the
other half-lines yields an optimal MinMax2 matching of the desired form.

Theorem 14. If α ≤ π
4
, MinMax2 can be solved in O(n) time.

Proof. We only consider matchings of the form as described in Lemma 13. We will show
that there are only O(n) matchings of this form and that the value of each of these
matchings can be computed in O(1) time after doing some precomputing in O(n) time.

The matchings described in Lemma 13 are in particular of the form of the matchings
described in Lemma 12. Therefore, it follows as in the proof of Theorem 13 that there are
only O(n) matchings of this form. Let b1, b2, . . . and r1, r2, . . . be the blue and red points,
respectively, on the boundary of one of the two small sectors in the order of decreasing
distance to x. If a matching has k edges in this sector, then the longest edge in this
sector has the value mk := maxi=1,...,k d(bi, ri). Since mk+1 = max(mk, d(bk+1, rk+1)) for
all k ≥ 1, the values mk, k = 1, 2, . . . , can be computed in total O(n) time. The same
can be done for the other small sector. Since the big sectors have the decreasing chords

19

property, the longest edge in a big sector is always the edge farthest from x. Therefore,
after precomputing the values mk for both small sectors, the value of a matching can be
found in O(1) time.

Remarks for this section. The presented algorithms for MaxMin2 and MinMax2
rely on the existence of an optimal matching with a special structure: the points on each
half-line of at least one color are partitioned into O(1) subsets of consecutive points and
all points of the same subset are matched through the same sector. Without any special
structure it is difficult to make any assumptions, as for example for the MaxMin2, for
which we are currently not aware of any such structure.

6 Concluding remarks
We considered new optimization variants for perfect non-crossing matchings of points in
the plane. In most MinMin and MaxMax variants, we came up with optimal algorithms
by exploiting structural properties of the point sets, combined with existing techniques
from diverse problems. On the contrary, we saw that the MaxMin variant exhibits
a significant difficulty. Designing efficient algorithms even for simple configurations, as
cocircular or doubly collinear points, is not at all obvious and thus, each variation is quite
interesting on its own. Throughout the paper we posed several open questions together
with suggestions for approaches. For instance, regarding convex bichromatic point sets,
can orbits help to improve the MaxMin algorithms? Regarding arbitrary point sets,
is there a polynomial time feasibility check for a bichromatic edge? Are the MaxMin
variants NP-hard as their MinMax counterparts? It would be interesting to see how
Table 1 can be filled with optimal time algorithms or hardness results.

Acknowledgements. Preliminary discussions were held during the Intensive Research
Program in Discrete, Combinatorial and Computational Geometry which took place in
Barcelona in 2018. We are grateful to the Centre de Recerca Matemàtica, Universitat
Autónoma de Barcelona,for hosting the event and to the organizers for providing the
platform to meet and collaborate. We would also like to thank Carlos Alegría, Carlos
Hidalgo Toscano, Oscar Iglesias Valiño, and Leonardo Martínez Sandoval for initial dis-
cussions on the problems, and Carlos Seara for raising a question that motivated this work.
Finally, we would like to thank an anonymous reviewer for bringing to our attention the
halfplane range queries.

20

https://dccg.upc.edu/irp2018/
https://dccg.upc.edu/irp2018/
http://www.crm.cat

References
[1] A. K. Abu-Affash, P. Carmi, M. J. Katz, and Y. Trabelsi. Bottleneck non-crossing

matching in the plane. Computational Geometry, 47(3A):447–457, 2014.

[2] P. K. Agarwal. Simplex range searching and its variants: A review. In A Journey
Through Discrete Mathematics, pages 1–30. Springer, 2017.

[3] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels
in 3-dimensional arrangements and its applications. SIAM Journal on Computing,
29(3):912–953, 2000.

[4] P. K. Agarwal and M. Sharir. Arrangements and their applications. In Handbook of
Computational Geometry, chapter 2, pages 49–119. North-Holland, 2000.

[5] N. Alon, S. Rajagopalan, and S. Suri. Long non-crossing configurations in the plane.
In Proc. 9th Annual Symposium on Computational Geometry, pages 257–263, 1993.

[6] T. Asano, S. K. Ghosh, and T. C. Shermer. Visibility in the plane. In Handbook of
Computational Geometry, chapter 19, pages 829–876. North-Holland, 2000.

[7] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annual
ACM Symposium on Theory of Computing, pages 80–86, 1983.

[8] A. Biniaz, A. Maheshwari, and M. H. Smid. Bottleneck bichromatic plane matching
of points. In Proc. 26th Canadian Conference on Computational Geometry, pages
431–435, 2014.

[9] J. G. Carlsson, B. Armbruster, S. Rahul, and H. Bellam. A bottleneck matching
problem with edge-crossing constraints. International Journal of Computational Ge-
ometry & Applications, 25(4):245–261, 2015.

[10] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry, 16(4):361–368, 1996.

[11] J. Colannino, M. Damian, F. Hurtado, J. Iacono, H. Meijer, S. Ramaswami, and
G. Toussaint. An O(n log n)-time algorithm for the restriction scaffold assignment
problem. Journal of Computational Biology, 13(4):979–989, 2006.

[12] J. Cong, A. B. Kahng, and G. Robins. Matching-based methods for high-performance
clock routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 12(8):1157–1169, 1993.

[13] H. Edelsbrunner. Computing the extreme distances between two convex polygons.
Journal of Algorithms, 6(2):213–224, 1985.

[14] A. Efrat, A. Itai, and M. J. Katz. Geometry helps in bottleneck matching and related
problems. Algorithmica, 31(1):1–28, 2001.

21

[15] A. Efrat and M. J. Katz. Computing fair and bottleneck matchings in geometric
graphs. In Proc. 7th International Symposium on Algorithms and Computation, pages
115–125. Springer, 1996.

[16] D. Eppstein, M. van Kreveld, B. Speckmann, and F. Staals. Improved grid map
layout by point set matching. International Journal of Computational Geometry &
Applications, 25(02):101–122, 2015.

[17] J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

[18] J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm.
BIT Numerical Mathematics, 32(2):249–267, 1992.

[19] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, and M. Sharir. Dynamic planar
voronoi diagrams for general distance functions and their algorithmic applications.
Discrete & Computational Geometry, 64(3):838–904, 2020.

[20] C.-Y. Lo, J. Matoušek, and W. Steiger. Algorithms for ham-sandwich cuts. Discrete
& Computational Geometry, 11(4):433–452, 1994.

[21] O. Marcotte and S. Suri. Fast matching algorithms for points on a polygon. SIAM
Journal on Computing, 20(3):405–422, 1991.

[22] J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete & Com-
putational Geometry, 10(2):157—-182, 1993.

[23] M. Savić and M. Stojaković. Faster bottleneck non-crossing matchings of points in
convex position. Computational Geometry, 65:27–34, 2017.

[24] M. Savić and M. Stojaković. Bottleneck bichromatic non-crossing matchings using
orbits, 2018.

[25] K. Tangwongsan, M. Hirzel, and S. Schneider. Low-latency sliding-window aggrega-
tion in worst-case constant time. In Proc. 11th ACM International Conference on
Distributed and Event-based Systems, pages 66–77, 2017.

[26] G. T. Toussaint. An optimal algorithm for computing the minimum vertex distance
between two crossing convex polygons. Computing, 32(4):357–364, 1984.

[27] P. M. Vaidya. Geometry helps in matching. SIAM Journal on Computing,
18(6):1201–1225, 1989.

[28] K. R. Varadarajan. A divide-and-conquer algorithm for min-cost perfect matching
in the plane. In Proc. 39th Symposium on Foundations of Computer Science, pages
320–329, 1998.

[29] R. C. Veltkamp and M. Hagedoorn. State of the art in shape matching. In Principles
of visual information retrieval, pages 87–119. Springer, 2001.

22

	1 Introduction
	1.1 Related work on perfect non-crossing matchings
	1.2 Problem variants considered and our contribution.

	2 Monochromatic points in general position
	2.1 MinMin1 and MaxMax1 matchings in general position

	3 Points in convex position
	3.1 A dynamic programming approach
	3.2 MinMin and MaxMax matchings in convex position

	4 Points on a circle
	4.1 MaxMin1 matching on a circle
	4.2 Other matchings on a circle

	5 Doubly collinear points
	5.1 MinMin2 and MaxMax2 matchings in doubly collinear point sets
	5.2 MinMax2 and MaxMin2 matchings in doubly collinear point sets

	6 Concluding remarks

