Skip to main content

A Worst-Case Optimal Algorithm to Compute the Minkowski Sum of Convex Polytopes

  • Conference paper
  • First Online:
Book cover Algorithms and Discrete Applied Mathematics (CALDAM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12601))

Included in the following conference series:

  • 644 Accesses

Abstract

We propose algorithms to compute the Minkowski sum of a set of convex polytopes in \(\mathbb {R}^d\). The input and output of the proposed algorithms are the face lattices of the input and output polytopes respectively. We first present the algorithm for the Minkowski sum of two convex polytopes. The time complexity of this algorithm is \(O(d^\omega nm)\) where n and m are the face lattice sizes of the two input polytopes and \(\omega \) is the matrix multiplication exponent (\(\omega \sim 2.373\)). Our algorithm for two summands is worst-case optimal for fixed d. We generalize this algorithm for r convex polytopes, say \(P_i\), \(1\le i \le r\). The time complexity of this generalization is \(O(\min \{d^\omega \!N\!M,d^\omega \!r\prod |P_i|\})\) where \(N = \sum |P_i|\) is the total size of the face lattices of the r input polytopes and M is the size of the face lattice of their Minkowski sum \(P_1 \oplus \cdots \oplus P_r\). Our algorithm for multiple summands is worst-case optimal for fixed \(d \ge 3\) and \(r < d\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adiprasito, K.A., Sanyal, R.: Relative Stanley-Reisner theory and upper bound theorems for Minkowski sums. Publications mathématiques de l’IHÉS 124(1), 99–163 (2016)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. 21(1–2), 39–61 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bekker, H., Roerdink, J.B.T.M.: An efficient algorithm to calculate the Minkowski sum of convex 3D polyhedra. In: Alexandrov, V.N., Dongarra, J.J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 619–628. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45545-0_71

    Chapter  Google Scholar 

  4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  5. Chan, T.M.: Output-sensitive results on convex hulls, extreme points, and related problems. Discret. Comput. Geom. 16(4), 369–387 (1996). https://doi.org/10.1007/BF02712874

    Article  MathSciNet  MATH  Google Scholar 

  6. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discret. Comput. Geom. 10(4), 377–409 (1993). https://doi.org/10.1007/BF02573985

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazelle, B.M.: Convex decompositions of polyhedra. In: Proceedings STOC, pp. 70–79 (1981)

    Google Scholar 

  8. Chazelle, B.M., Dobkin, D.P.: Optimal convex decompositions. In: Toussaint, G.T. (ed.) Computational Geometry. Machine Intelligence and Pattern Recognition, vol. 2, pp. 63–133 (1985)

    Google Scholar 

  9. Chew, L.P., Scot Drysdale, R.L.: Voronoi diagrams based on convex distance functions. In: Proceedings SoCG, pp. 235–244 (1985)

    Google Scholar 

  10. Das, S., Nandy, A., Sarvottamananda, S.: Radius, diameter, incenter, circumcenter, width and minimum enclosing cylinder for some polyhedral distance functions. Discret. Appl. Math. (2020, in press)

    Google Scholar 

  11. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-61568-9

    Book  MATH  Google Scholar 

  12. Fogel, E., Halperin, D.: Exact Minkowski sums of convex polyhedra. In: Proceedings SoCG, pp. 382–383 (2005)

    Google Scholar 

  13. Fukuda, K.: From the zonotope construction to the Minkowski addition of convex polytopes. J. Symb. Comput. 38(4), 1261–1272 (2004)

    Article  MathSciNet  Google Scholar 

  14. Fukuda, K., Weibel, C.: Computing all faces of the Minkowski sum of V-polytopes. In: Proceedings of the 17th CCCG, pp. 253–256 (2005)

    Google Scholar 

  15. Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: computational complexity and applications to Gröbner basis. SIAM J. Discret. Math. 6(2), 246–269 (1993)

    Article  Google Scholar 

  16. Grünbaum, B., Kaibel, V., Klee, V., Ziegler, G.M.: Convex Polytopes. Graduate Texts in Mathematics. Springer, Heidelberg (2003). https://doi.org/10.1007/978-1-4613-0019-9

    Book  Google Scholar 

  17. Karavelas, M.I., Tzanaki, E.: The maximum number of faces of the Minkowski sum of two convex polytopes. In: Proceedings SODA, pp. 11–28 (2012)

    Google Scholar 

  18. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings ISSAC, pp. 296–303 (2014)

    Google Scholar 

  19. Ramkumar, G.D.: An algorithm to compute the Minkowski sum outer-face of two simple polygons. In: Proceedings SoCG, pp. 234–241 (1996)

    Google Scholar 

  20. Seidel, R.: Constructing higher-dimensional convex hulls at logarithmic cost per face. In: Proceedings STOC, pp. 404–413 (1986)

    Google Scholar 

  21. Weibel, C.: Maximal F-vectors of Minkowski sums of large numbers of polytopes. Discret. Comput. Geom. 47(3), 519–537 (2012)

    Article  MathSciNet  Google Scholar 

  22. Wein, R.: Exact and efficient construction of planar Minkowski sums using the convolution method. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 829–840. Springer, Heidelberg (2006). https://doi.org/10.1007/11841036_73

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhadeep Ranjan Dev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S., Dev, S.R., Sarvottamananda, S. (2021). A Worst-Case Optimal Algorithm to Compute the Minkowski Sum of Convex Polytopes. In: Mudgal, A., Subramanian, C.R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2021. Lecture Notes in Computer Science(), vol 12601. Springer, Cham. https://doi.org/10.1007/978-3-030-67899-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67899-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67898-2

  • Online ISBN: 978-3-030-67899-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics