
ar
X

iv
:2

01
1.

10
97

8v
1

 [
m

at
h.

N
T

]
 2

2
N

ov
 2

02
0

On algorithms to find p-ordering

Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

IIT Kanpur

Abstract. The concept of ?-ordering for a prime ? was introduced by Manjul

Bhargava (in his PhD thesis) to develop a generalized factorial function over an

arbitrary subset of integers. This notion of ?-ordering provides a representation of

polynomials modulo prime powers, and has been used to prove properties of roots

sets modulo prime powers. We focus on the complexity of finding a ?-ordering

given a prime ?, an exponent : and a subset of integers modulo ?: .

Our first algorithm gives a ?-ordering for set of size = in time Õ (=: log ?),
where set is considered modulo ?: . The subsets modulo ?: can be represented

succinctly using the notion of representative roots (Panayi, PhD Thesis, 1995;

Dwivedi et.al, ISSAC, 2019); a natural question would be, can we find a ?-ordering

more efficiently given this succinct representation. Our second algorithm achieves

precisely that, we give a ?-ordering in time Õ (32: log ? + =: log ? + =3), where

3 is the size of the succinct representation and = is the required length of the ?-

ordering. Another contribution that we make is to compute the structure of roots

sets for prime powers ?: , when : is small. The number of root sets have been

given in the previous work (Dearden and Metzger, Eur. J. Comb., 1997; Maulick,

J. Comb. Theory, Ser. A, 2001), we explicitly describe all the root sets for ?2, ?3

and ?4.

Keywords: root-sets · computational complexity · ?-ordering · polynomials ·

prime powers

1 Introduction

Polynomials over finite fields have played a crucial role in computer science with impact

on diverse areas like error correcting codes [BRC60,Hoc59,RS60,Sud97], cryptogra-

phy [CR01,Odl85,Len91], computational number theory [AL86,AKS04] and computer

algebra [Zas69,LLL82]. Mathematicians have studied almost all aspects of these poly-

nomials; factorization of polynomials, roots of a polynomial and polynomials being

irreducible or not are some of the natural questions in this area. There is lot of struc-

ture over finite field; we can deterministically count roots and find if a polynomials is

irreducible in polynomial time [LN97]. Not just that, we also have efficient randomized

algorithms for the problem of factorizing polynomials over finite fields [CZ81,Ber70].

The situation changes drastically if we look at rings instead of fields. Focusing our

attention on the case of numbers modulo a prime power (ring // ?: , for a prime ?

and a natural number : ≥ 2) instead of numbers modulo a prime (field F?), we don’t

even have unique factorization and the fact that the number of roots are bounded by

the degree of the polynomial. Still, there has been some interesting work in last few

decades. Maulik [Mau01] showed bound on number of roots sets, sets which are roots

http://arxiv.org/abs/2011.10978v1

2 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

for a polynomial modulo a prime power. There has been some recent works giving a

randomized algorithm for root finding [BLQ13] and a deterministic algorithm for root

counting [DMS19,CGRW19].

The concept of ?-ordering and ?-sequences for a prime ?, introduced by Bhar-

gava [Bha97], is an important tool in studying the properties of roots sets and polyno-

mials over powers of prime ? [Mau01,Bha97,Bha09]. Bhargava’s main motivation to

introduce ?-ordering was to generalize the concept of factorials (=! for = ≥ 0 ∈ //) from

the set of integers to any subset of integers. He was able to show that many number-

theoretic properties of this factorial function (like the product of any : consecutive

non-negative integers is divisible by :!) remain preserved even with the generalized

definition for a subset of integers [Bha00].

For polynomials, ?-ordering allows us to give a convenient basis for representing

polynomials on a subset of ring //?: . One of the interesting problem for polynomials over

rings, of the kind // ?: , is to find the allowed root sets (Definition 3). Maulik [Mau01]

was able to use this representation of polynomials over // ?: (from ?-ordering) to give

asymptotic estimates on the number of root sets modulo a prime power ?: ; he also gave

a recursive formula for root counting.

Our contributions While a lot of work has been done on studying the properties of ?-

orderings [Mau01,Joh09,Bha09], there’s effectively no work on finding the complexity

of the problem: given a subset of numbers modulo a prime power, find a ?-ordering.

Our main contribution is to look at the computational complexity of finding ?-ordering

in different settings. We also classify and count the root-sets for // ?: , when : ≤ 4, by

looking at their symmetric structure.

• ?-ordering for a general set: Suppose, we want to find the ?-ordering of a set

(⊆ // ?: , such that, |(| = =. A naive approach, given in Bhargava [Bha97], gives

a Õ (=3: log(?)) time algorithm. We exploit the recursive structure of ?-orderings

and optimize the resulting algorithm using data structures. These optimizations

allow us to give an algorithm that works in Õ(=: log(?)) time. The details of the

algorithm, its correctness and time complexity is given in Section 3.

• ?-ordering for a subset in representative root representation: A polynomial of

degree 3 in // ?: can have exponentially many roots, but they can have at most 3

representative roots [Pan95,DMS19,BLQ13] giving a succinct representation. The

natural question is, can we have an efficient algorithm for finding a ?-orderingwhere

the complexity scales according to the number of representative roots and not the size

of the complete set. We answer this in affirmative, and provide an algorithm which

works in Õ(32: log ? + =: log ? + =3) time, where 3 is the number of representative

roots and = is the length of ?-ordering. The details of this algorithm and its analysis

are presented in Section 4.

• Roots sets for small powers: A polynomial in // ?: , even with small degree, can

have exponentially large number of roots. But not all subsets of // ?: are a root-set

for some polynomial. The number of root-sets for the first few values of : were

calculated numerically by Dearden and Metzger [DM97]. Building on previous

work, Maulik [Mau01] produced an upper bound on the number of root-sets for any

? and :. He also gave a recursive formula for the exact number of root-sets using

On algorithms to find ?-ordering 3

the symmetries in their structure. We look at the structure of these root sets and

completely classify all possible root-sets for : ≤ 4. In Section 5, we discuss and

distinctly describe all the root sets in // ?2 , // ?3 and // ?4 .

2 Preliminaries

Our primary goal is to find a ?-ordering of a given set (⊆ // ?: , for a given prime ? and

an integer : > 0. Since the input size is polynomial in |(|, log ?, :; an efficient algorithm

should run in time polynomial in these parameters. For the sake of clarity, log : factors

will be ignored from complexity calculations; this omission will be expressed by using

notation Õ instead of O in time complexity. We also use [=] for the set {0, 1, . . . , =−1}.
We begin by defining the valuation of an integer modulo a prime ?.

Definition 1. Let ? be a prime and 0 ≠ 0 be an integer. The valuation of the integer 0

modulo ?, denoted E? (0), is the integer E such that ?E | 0 but ?E+1 ∤ 0. We also define

F? (0) := ?E? (0) .

If 0 = 0 then both, E? (0) and F? (0), are defined to be∞.

Definition 2. For any ring (with the usual operations + and ∗, we have

(+ 0 := {G + 0 | G ∈ (} and 0 ∗ (:= {0 ∗ G | G ∈ (}

Definition 3. A given set (is called a root set in a ring ' if there is a polynomial

5 (G) ∈ '[G], whose roots in ' are exactly the elements of (.

Representative Roots: The notion of representative roots in the ring // ?: has been used

to concisely represent roots of a polynomial [Pan95,DMS19,BLQ13].

Definition 4. The representative root (0 + ?8∗) is a subset of // ?: ,

0 + ?8∗ := {0 + ?8H | H ∈ // ?:−8−1}

Extending, a set (= {A1, · · · , A;} of representative roots correspond to
;⋃

8=1

A8 ⊆ // ?: .

Conversely, we show that an (⊆ // ?: can be uniquely represented by representative

roots.

Definition 5. Let (⊆ // ?: , then the set of representative roots (rep
= {A1 = V1 +

?:1∗, A2 = V2 + ?
:2∗, ..., A; = V; + ?

:;∗} is said to be a minimal root set representation

of (if

1. (=

;⋃
8=1

A8 ,

2. � A8 , A 9 ∈ (
rep : A8 ⊆ A 9 ,

3. ∀8 :
⋃

1∈[?]

(
A8 + ?

:8−1 · 1
)
* (

Theorem 1. Given any set (⊆ // ?: , the minimal root set representation of (is unique.

4 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Proof. For the sake of contradiction, let (rep and (̂rep be two different minimal repre-

sentations of a set (. There exists an 0 ∈ (such that it belongs to both representations,

A ∈ (rep and Â ∈ (̂rep and A ≠ Â. Then A can be written as 0 + ?:1∗ and Â can be written

as 0 + ?:2∗.
By Observation 8, A ∩ Â ≠ ∅ implies A ⊂ Â or Â ⊂ A. Without loss of generality, let

Â ⊂ A (equivalently :1 < :2).

From Â ⊂ A and :1 < :2, (Â + 1 · ?:2−1) ⊆ A for all 1 ∈ [?]. Using A ⊆ (, we get⋃
1∈[?]

(
Â + 1 · ?:2−1

)
⊆ (,

contradicting minimality of (̂rep.

� �

?-ordering and ?-sequence Bhargava [Bha97] introduced the concept of ?-ordering

for any subset of a Dedekind domain, we restrict to the rings of the form // ?: [Bha00].

Definition 6 ([Bha97]). ?-ordering on a subset (of // ?: is defined inductively.

1. Choose any element 00 ∈ (as the first element of the sequence.

2. Given an ordering 00, 01, . . . 08−1 up to 8 − 1, choose 08 ∈ (\{00, 01 . . . 08−1} which

minimizes E? ((08 − 00) (08 − 01) . . . (08 − 08−1)).

The 8-th element of the associated ?-sequence for a ?-ordering 00, 01, . . . 0= is

defined by

E? ((, 8) =

{
0 8 = 0,

F? ((08 − 00) (08 − 01) . . . (08 − 08−1)) 8 > 0.

. In the (8 + 1)-th step, let G ∈ (\ {00, 01, ..., 08−1} then the value E? ((G − 00) (G −
01) . . . (G − 08−1)) is denoted as the ?-value of G at that step. If the step is clear from

context, we call the ?-value of that element at that step as its ?-value.

The ?-ordering on a subset of // can be defined similarly. Bhargava surprisingly

proved the following theorem.

Theorem 2 ([Bha97]). For any two ?-orderings of a subset (⊆ // and a prime ?, the

associated ?-sequences are same.

Few observations about ?-orderings/?-sequences/ representative roots are listed in

Appendix B. We also use a min-heap data structure to optimize our algorithm, details

of min-heap are given in Appendix C.

3 Algorithm to find p-ordering on a given set

The naive algorithm for finding the ?-ordering, from its definition, has time complexity

Õ (=3: log(?)) (Appendix A). The main result of this section is the following theorem.

Theorem 3. Given a set (⊆ // , a prime ? and an integer : such that each element of

(is less than ?: , we can find a ?-ordering on this set in Õ (=: log ?) time.

The proof of the theorem follows by constructing an algorithm to find the ?-ordering.

On algorithms to find ?-ordering 5

Outline of the algorithm We use the recursive structure of ?-ordering given by Maulik

[Mau01]. Crucially, to find the ?-value of an element 0 at each step, we only need to

look at elements congruent mod? to 0 (Observation 10).

Suppose (9 is the set of elements of (congruent to 9 mod ?. By the observation

above, our algorithm constructs the ?-ordering of set (by merging the ?-ordering of

(9 ’s. Given a ?-ordering up to some step, the next element for the ?-ordering of (

is computed by just comparing the first elements in ?-ordering of (9 ’s (not present

in the already computed ?-ordering). The ?-ordering of translated (9 ’s is computed

recursively (Observation 11).

While merging the ?-orderings on each of the (8’s, at each step we need to extract

and remove the element with the minimum ?-value over all (9 ’s and replace it with the

next element from the ?-ordering on the same set (9 . Naively, it would need to find the

minimum over all ? number of elements taking Õ (?) time. Instead, we use min heap

data structure, using only Õ (log ?) time for extraction and insertion of elements.

Each node of the min-heap(�) consists of the following values,

1. ?_E0;D4: contains ?-value of the element when added to ?-ordering,

2. B4C: contains the index of the set (0, (1, ..., (?−1 element belongs to, and

3. E0;D4: contains the value of the element.

These values are used to preserve the properties of the data structures used. With

above intuition in mind, we develop Algorithm 1 to find the ?-ordering on a subset of

// .

3.1 Proof of Theorem 3

To prove the correctness of Algorithm 1, we need two results: Merge() procedure works

and valuation is computed correctly in the algorithm.

Theorem 4 (Correctness of Merge()). In Algorithm 1, given (be a subset of integers,

let for : ∈ {0, 1, ..., ? − 1}, (: = {B ∈ (| B ≡ : (mod ?)}, then given a ?-ordering on

each of the (:’s, Merge((0, (1, ..., (?−1) gives a valid ?-ordering on (.

Proof outline. We start with ?-orderings on each of the non-empty sets ((0, (1, ..., (?−1),
and create a heap taking the first element of each of these ?-ordering. At each successive

step, we pick the element in the heap with minimum ?-value to add to the ?-ordering,

and insert the next element from the corresponding (9 to the heap.

We know that the valuation of any element in the combined ?-ordering is going to

be equal to their valuation in the ?-ordering over the set (9 containing them (by Obser-

vation 10). If we show that at each step the element chosen has the least valuation out of

all the elements left Merge() works correctly. We prove this by getting a contradiction

if any element other than the ones obtained from the min heap is selected by showing

the p_value will be greater than what we get from Merge(). �

The details of the proof can be found in Appendix D.1. �

Theorem 5 (Correctness of valuations). In Algorithm 1, let (be a subset of integers,

then Find_?-Ordering(() gives a valid ?-values for all elements of (.

6 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Algorithm 1 Find p-ordering

1: procedure Merge((0, (1, ..., (?−1)

2: (← []
3: for 8 ∈ [0, 1, ..., ? − 1] do

4: for 9 ∈ [0, ..., ;4=((8) − 1] do

5: (8 [9].B4C ← 8

6: 80, 81, 82, ...8?−1 ← (0, 0, ..., 0)
7: � ← Create_Min_Heap(=>34 = {(0 [80], (1 [81], ..., (?−1 [8?−1]}, :4H = ?_E0;D4)

8: while H.IsEmpty()!=true do

9: 0 ← Extract_Min(�)

10: 9 ← 0.B4C

11: if 8 9 < ;4=((9) then

12: 8 9 ← 8 9 + 1

13: Insert(�, (9 [8 9])

14: (← 0

15: return (

16: procedure Find_?-Ordering(()

17: if length(S)==1 then

18: ([0].?_E0;D4 ← 1

19: Return (

20: (0, (1, ..., (?−1 ← ([], [], ..., [])
21: for 8 ∈ (do

22: (8.E0;D4 mod ? .0??4=3 (8)

23: for 8 ∈ [0, 1, ..., ? − 1] do

24: (8 ← Find_?-Ordering(((8 − 8)/?)

25: for 9 ∈ [0, ..., ;4=((8) − 1] do

26: (8 [9].E0;D4 ← ? ∗ (8 [9].E0;D4 + 8
27: (8 [9].?_E0;D4 ← (8 [9].?_E0;D4 + 9

28: (← Merge((0, (1 , ..., (?−1)

29: return (

In Algorithm 1, we use a sorted list I of non-empty (8’s, and only iterate over I in steps 3-5,

23-28. Hence, decreasing the time complexities of these loops. We can create/update the list I in

the loop at steps 21-22.

Proof outline. The proof requires two parts: Merge() preserves valuation and changes

in the valuation due to translation does not induce errors.

• To prove that Merge() preserves valuation, we make use of the fact that the combined

?-ordering after merge has the individual ?-orderings as a sub-sequence. Hence,

the valuation of each element in the combined ?-ordering is going to be equal to

the valuation in the individual ?-ordering (by Observation 10). Hence, Merge()

preserves valuations.

• We show that the change in valuations due to translation (Step 24) are corrected (Step

27). This is easy to show by just updating the valuation according to Observation 12.

Hence, valuations are correct maintained throughout the algorithm. �

The details of the proof can be found in Appendix D.2. �

On algorithms to find ?-ordering 7

Using the above two theorems, we prove the correctness of Algorithm 1.

Proof of Theorem 3. For the base case, if (is a singleton, then the ?-ordering over it

is just a single element which is also what Find_?-Ordering(() gives. Let Find_?-

Ordering() works for |(| < :, if we show it works for |(| = :, then by induction,

Find_?-Ordering() works for sets of arbitrary sizes.

Let |(| = :, then when we break the set into (0, (1, ..., (?−1 (Steps 20-22), either

all element belong in a single (8 or get distributed into multiple sets. We can argue that

if all the elements fall into the same group, then when we keep calling recursion (Step

24), after some point set breaks into multiple (8’s. Since, by Observation 11, we know

that the ?-ordering on reduced elements is preserved, we’ll get the correct ?-ordering

on the original set. Hence, we only need to prove this for the later case.

Since all the element of the set (8 follow ∀H ∈ (8, H ≡ 8 mod ?, hence ∀H ∈ (8,

? | (H − 8), this implies ((8 − 8)/? ⊂ // . Hence, Find_?-Ordering(((8 − 8)/?) gives

a ?-ordering on ((8 − 8)/? with the correct valuations associated with each element

(Theorem 5).

From Observation 11, we know that if (00, 01, ...) be a ?-ordering on some set �, then

(?∗00+8, ?∗01+8, ...) be a ?-ordering on ?∗�+8. Since, Find_?-Ordering(((8−8)/?)

is a ?-ordering on ((8 − 8)/?, then ? ∗Find_?-Ordering(((8 − 8)/?)+ G is a ?-ordering

on (8 (Step 26).

Next, since we have valid ?-orderings on (0, (1, ..., (?−1, Merge((0, (1, ..., (?−1)

returns a valid ?-ordering on ((Theorem 4).

By induction, our algorithm returns a valid ?-ordering on any subset of integers.

If each element of (is less than ?: , then ?-ordering on set (requires Õ(=: log ?)
time (Theorem 14 of Appendix D.3). � �

4 Algorithm to find p-ordering on a set of representative roots

The notion of representative roots (Definition 2) allows us to represent an exponentially

large subset of // ?: succinctly. Further imposing a few simple conditions on this repre-

sentation, namely the minimal representation (Definition 5), our subset is represented in

a unique way (Theorem 1). A natural question arises, can we efficiently find a ?-ordering

given a set in terms of representative roots?

In this section we show that the answer is affirmative by constructing an efficient

algorithm in terms of the size of the succinct representation.

Theorem 6. Given a set (⊂ // ?: , for a prime ? and an integer :, that can be

represented in terms of 3 representative roots, we can efficiently find a ?-ordering of

length = for (in Õ(32: log ? + =: log ? + =?) time.

The proof of the theorem follows by constructing an algorithm to find the ?-ordering

given a set in representative root notation. We can assume that the representative roots

are disjoint. If they are not, one representative root will be contained in another (Obser-

vation 8), all such occurrences can be deleted in Õ(32: log ?) time.

8 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Outline of the algorithm The important observation is, we already have a natural ?-

ordering defined on a representative root (Observation 13). Since a ?-ordering on each

representative root is already known, we just need to find a way to merge them. Merging

was easy in Algorithm 1 because progress in any one of the ?-ordering of an (9 did not

effect the ?-value of an element outside (9 . However, in this case the exact increase in

the ?-value is known by Observation 9.

Let 3 be the number of representative roots, we maintain an array of size 3 to keep

the valuations that we would get whenever we add the next element from a representative

root. To update the 8-th value of this array when an element from the 9-th representative

root is added, we simply add the value E? (V8 − V 9)(8 ≠ 9). Hence, at each step we find

the minimum value in this array (in Õ (d)) and add it to the combined ?-ordering (in

Õ (1)) and we update all the 3 values in this array (in Õ(d)). We repeat this process till

we get the ?-ordering of the desired length.

With the above intuition in mind, we develop Algorithm 2 to find the ?-ordering of

length = on a subset (of // ?: given in representative root representation.

4.1 Proof of Correctness

To prove the correctness of our algorithm, we first prove that valuations are correctly

maintained.

Theorem 7. In Algorithm 2, Find_?-Ordering((, =) maintains the correct valuations

on the set (of representative roots in E0;D0C8>=B at every iteration of the loop.

Proof outline. All elements have 0 valuation at the beginning (Step 17). Also, adding an

element from the 8-th representative root increases the valuation of the 9-th representative

root by 2>AA (8, 9) (Step 33) for 8 ≠ 9 (Observation 9). The increase for the next element

of 8 is exponent times the increase in ?-sequence of // ?: (Step 30) (Observation 13).

So, we correctly update the valuations array in each iteration. �

A detailed proof can be found in Appendix E.1. �

Proof of Theorem 6. By the definition of ?-ordering we know that at each iteration if

we choose the element with the least valuation then we get a valid ?-ordering. By

Theorem 7, we know that E0;D0C8>=B array has the correct next valuations. Hence,

to find the representative root with gives the least valuation, we find the index of the

minimum element in E0;D0C8>=B.

To add the next value to the ?-ordering, we use Observation 13 to find the next

element in the ?-ordering on the representative root. Hence, the element added has the

least valuation. Hence, Find_?-Ordering((, =) returns the correct ?-ordering.

If (contains 3 representative roots of // ?: , then Algorithm 2 finds ?-ordering on

(up to length = in Õ (32: log ? + =: log ? + =3) time (Theorem 15 of Appendix E.2).

� �

On algorithms to find ?-ordering 9

Algorithm 2 Find p-ordering from minimal notation

1: procedure Correlate(()

2: �>AA ← [0];4=(()×;4=(()
3: �>AA ← [0];4=(()×;4=(()
4: for 9 ∈ [1, ..., ;4=(()] do

5: for : ∈ [1, ..., ;4=(()] do

6: �>AA [9] [:] ← E? (([9].E0;D4 − ([:].E0;D4)

7: return �>AA

8: procedure ?-Exponent_Increase(=)

9: E? (1) ← 1

10: for 9 ∈ [1, ..., =] do

11: E? ((9 + 1)!) ← E? (9 + 1) ∗ E? (9!)
12: ?_4G?>=4=C [9] ← E? ((9 + 1)!) − E? (9!)

13: return ?_4G?>=4=C

14: procedure Find_?-Ordering((, =)

15: 2>AA ← Correlate(()

16: 8=2A40B4← ?-Exponent_Increase(=)

17: E0;D0C8>=B ← [0] |(|
18: ?_>A34A8=6← {}
19: 81, 82 . . . 8 |(| ← 0

20: for 8 ∈ {1, 2, . . . =} do

21: <8=← ∞
22: <8=_8=34G ←∞
23: for 9 ∈ [1, ..., ;4=(()] do

24: if E0;D0C8>=B[9] < <8= then

25: <8=← E0;D0C8>=B[9]
26: <8=_8=34G ← 9

27: ?_>A34A8=6.0??4=3 (([<8=_8=34G].E0;D4+ ?([<8=_8=34G].4G?>=4=C ∗ 8<8=_8=34G)
28: for 9 ∈ [1, ..., ;4=(()] do

29: if 9 = <8=_8=34G then

30: E0;D0C8>=B[9] ← E0;D0C8>=B[9] + ([<8=_8=34G].4G?>=4=C ∗ 8=2A40B4[8 9]
31: else

32: E0;D0C8>=B[9] ← E0;D0C8>=B[9] + 2>AA (<8=_8=34G, 9)

33: 8<8=_8=34G ← 8<8=_8=34G + 1

34: return ?_>A34A8=6

5 Structure of root sets for a given k

We know that // ?: is not a unique factorization domain. In fact, even small degree

polynomials can have exponentially large number of roots. Interestingly, not all subsets

of // ?: can be a root set (Definition 3). Dearden and Metzger [DM97] showed that ' is

a root-set iff ' 9 = {A ∈ ' | A ≡ 9 (mod ?)} is also a root-set for all 9 ∈ [?]. The size

and structure of ' 9 is symmetric for all 9 . Let #?: be the number of possible ' 9’s, then

total number of possible root-sets become (#?:)? [DM97]. In this section, we discuss

and describe all possible ' 9 ’s in /?2 , /?3 and /?4 .

10 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Let (9 = {B ∈ // ?: | B ≡ 9 (mod ?)}, we take the following approach to find all

possible root-sets ' 9 ’s. Given an ' 9 , define ' = {(A− 9)/? : A ∈ ' 9 } to be the translated

copy. We show that if ' contains at least : many distinct residue classes mod?, then

' 9 = (9 (Observation 16). We exhaustively cover all the other cases, when ' contains

less than : residue classes (possible because : is small).

5.1 k = 2

We find that the root set ' 9 can only take the following structures (details in Ap-

pendix F.1).

1. 1 root-set is the complete sub-tree under 9 (more than 1 residue class), equivalently

' 9 = 9 + ? · ∗.

2. p root-sets are a single element congruent to 9 mod ? (1 residue class), equivalently

' 9 = 9 + ? · U, for U ∈ [?] .

3. 1 root-set is empty (no residue classes), equivalently

' 9 = ∅.

Hence, total root-sets, #?2 = ? + 2.

5.2 k = 3

Similar to : = 2, the root sets ' 9 can only take the following structure (details in

Appendix F.2).

1. 1 root-set is the complete sub-tree, equivalently

' 9 = 9 + ? · ∗.

2.
p (p−1)

2
root-sets are the union of 2 sub-trees different at the level ?1, equivalently

' 9 = (9 + ? · U1 + ?
2∗) ∪ (9 + ? · U2 + ?

2∗), for U1 ≠ U2 ∈ [?] .

3. p root-sets are a sub-tree at the level ?1, equivalently

' 9 = 9 + ? · U + ?2 ∗ , for U ∈ [?] .

4. p
2 root-sets are a single element congruent to 9 mod ?, equivalently

' 9 = 9 + ? · U1 + ?
2 · U2, for U1, U2 ∈ [?] .

5. 1 root-set is empty, equivalently

' 9 = ∅.

Hence, total root-sets, #?3 =
3?2+?+4

2
.

On algorithms to find ?-ordering 11

5.3 k = 4

Similar to : = 2, 3, the root sets ' 9 can only take the following structure (details in

Appendix F.3).

1. 1 root-set is the complete sub-tree under 9 , equivalently

' 9 = 9 + ? · ∗.

2.
p (p−1) (p−2)

6
root-sets under 9 are the union of 3 sub-trees different at the level ?1,

equivalently

' 9 = (9+ ? ·U1+ ?
2∗)∪(9+ ? ·U2+ ?

2∗)∪(9+ ? ·U3+ ?
2∗), for U1 ≠ U2 ≠ U3 ∈ [?] .

3.
p (p−1)

2
root-sets are the union of 2 sub-trees different at the level ?1, equivalently

' 9 = (9 + ? · U1 + ?
2∗) ∪ (9 + ? · U2 + ?

2∗), for U1 ≠ U2 ∈ [?] .

4. p root-sets are a sub-tree at the level ?1, equivalently

' 9 = 9 + ? · U + ?2 ∗ , for U ∈ [?] .

5.
p

3 (p−1)

2
root-sets are a union of 2 sub-trees at the level ?2 that are different at the

level ?1, equivalently

' 9 = (9 + ? ·U1+ ?
2 · V1+ ?

3∗) ∪ (9 + ? ·U2+ ?
2 · V2+ ?

3∗), for U1 ≠ U2 V1, V2 ∈ [?] .

6. p
2 root-sets are a sub-tree at the level ?2, equivalently

' 9 = 9 + ? · U1 + ?
2 · U2 + ?

3 · ∗, for U1, U2 ∈ [?] .

7. p
3 root-sets are a single element congruent to 9 mod ?, equivalently

' 9 = 9 + ? · U1 + ?
2 · U2 + ?

3 · U3, for U1, U2, U3 ∈ [?] .

8. 1 root-set is empty, equivalently

' 9 = ∅.

Hence, total root-sets, #?4 =
3?4+4?3+6?2+5?+12

6
.

References

AKS04. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of

mathematics, pages 781–793, 2004.

AL86. Leonard Adleman and Hendrik Lenstra. Finding irreducible polynomials over finite

fields. In Proc. 18th Annual ACM Symp. on Theory of Computing (STOC), 350 - 355

(1986), pages 350–355, 11 1986.

Ber70. E.R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of

Computation, 24:713–735, 07 1970.

Bha97. Manjul Bhargava. P-orderings and polynomial functions on arbitrary subsets of

dedekind rings. Journal Fur Die Reine Und Angewandte Mathematik - J REINE

ANGEW MATH, 1997:101–128, 01 1997.

Bha00. Manjul Bhargava. The factorial function and generalizations. American Mathematical

Monthly, 107, 11 2000.

Bha09. Manjul Bhargava. On ?-orderings, rings of integer values functions, and ultrametric

analysis. Journal of the American Mathematical Society, 22(4):963–993, 2009.

12 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

BLQ13. Jérémy Berthomieu, Grégoire Lecerf, and Guillaume Quintin. Polynomial root finding

over local rings and application to error correcting codes. Applicable Algebra in

Engineering, Communication and Computing, 24(6):413–443, 2013.

BRC60. R.C. Bose and D.K. Ray-Chaudhuri. On a class of error correcting binary group codes

*. Information and Control, 3:68–79, 03 1960.

CGRW19. Qi Cheng, Shuhong Gao, J Maurice Rojas, and Daqing Wan. Counting roots for

polynomials modulo prime powers. The Open Book Series, 2(1):191–205, 2019.

CLRS01. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, Cambridge, MA, 2001.

CR01. Benny Chor and Ronald Rivest. A knapsack type public key cryptosystem based on

arithmetic in finite fields. IEEE Transactions on Information Theory, 34, 09 2001.

CZ81. David Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over

finite fields. Mathematics of Computation, 36, 04 1981.

DM97. Bruce Dearden and Jerry Metzger. Roots of polynomials modulo prime powers. Eur.

J. Comb., 18:601–606, 08 1997.

DMS19. Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. Efficiently factoring polynomials

modulo ?4. International Symposium on Symbolic and Algebraic Computation, pages

139–146, 07 2019.

Hoc59. A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres, Revue de l’Association

Française de Calcul, 2, 01 1959.

Joh09. Keith Johnson. P-orderings of finite subsets of dedekind domains. Journal of Algebraic

Combinatorics, 30:233–253, 2009.

Len91. H. Lenstra. On the chor—rivest knapsack cryptosystem. Journal of Cryptology,

3:149–155, 01 1991.

LLL82. Arjen Lenstra, H. Lenstra, and László Lovász. Factoring polynomials with rational

coefficients. Mathematische Annalen, 261, 12 1982.

LN97. Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20. Cambridge university

press, 1997.

Mau01. Davesh Maulik. Root sets of polynomials modulo prime powers. J. Comb. Theory,

Ser. A, 93:125–140, 01 2001.

Odl85. A. Odlyzko. Discrete logarithms and their cryptographic significance. Advances in

Cryptography, EUROCRYPT ’84, Proceedings, Lecture Notes in Computer Science,

209:224–314, 1985.

Pan95. Peter N Panayi. Computation of Leopoldt’s P-adic regulator. PhD thesis, University

of East Anglia, 1995.

RS60. I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the

Society for Industrial and Applied Mathematics, 8:300–304, 06 1960.

Sud97. Madhu Sudan. Decoding reed solomon codes beyond the error-correction bound.

Journal of Complexity, 13:180–193, 03 1997.

Zas69. Hans Zassenhaus. On hensel factorization ii. Journal of Number Theory, 1:291–311,

07 1969.

On algorithms to find ?-ordering 13

Appendix A Naive Algorithm to find p-ordering

Given a set of integers (⊆ // ?: we can find a ?-ordering by naively checking the

element which will give us the minimum valuation with respect to ? for the given

expression as in Definition 6. After we have already chosen {00, 01, . . . 0C−1} we choose

the next element from (\{00, 01, . . . 0C−1} such that E? ((G−00) (G−01) . . . (G−0C−1)) is
minimum. The naive approach given in [Bha97] iterates over all G in (\{00, 01, . . . 0C−1}
and adds the element to the ?-ordering which gives the minimum valuation.

Time Complexity: Every time we keep on adding another element to the already existing

?-ordering, say of length C. For any given value of G ∈ (\{00, 01, . . . 0C−1}, calculating

G − 08 and multiplying for every 0 ≥ 8 < C takes O((= − C)C) operations in Z and since

each of them are less than ?: this takes O((=− C)C: log ?) ≤ O(=2: log ?). So repeating

this = times gives us the time complexity O(=3: log ?).

Appendix B Observations about representative roots and

p-sequences/ p-orderings

B.1 Representative roots

Observation 8. Given any two representative roots �1 = V1 + ?
:1∗ and �2 = V2 + ?

:2∗,
then either �1 ⊆ �2 or �2 ⊆ �1 or �1 ∩ �2 = ∅.

Proof. Let �1 = V1+?
:1∗ and �2 = V2+?

:2∗ be two root sets such that �1∩�2 = �̃ ≠ ∅,
then we show that �̃ = �1 or �̃ = �2.

Case 1: Let :1 = :2 = G. Let there is some element 0 ∈ �̃. Then 0 ∈ �1 and

0 ∈ �2, hence, �1 can be defined as �1 = 0 + ?G∗ and similarly �2 = 0 + ?G∗. Hence,

�̃ = �1 = �2.

Case 2: Let :1 ≠ :2, then without loss of generality, let’s assume that :1 < :2. Let

there is some element 0 ∈ �̃. Then, �1 can be defined as �1 = 0 + ?:1∗ and similarly

�2 = 0 + ?:2∗.
Let 1 ∈ �2, then 1 = 0 + ?:2 H for some H. Now, we know that the elements of �1

are of the form 0 + ?:1∗. Hence, putting ∗ = ?:2−:1H, we get 0 + ?:1 · (?:2−:1H) = 1,

hence 1 ∈ �1. Hence, �2 ⊂ �1. Hence, �̃ = �2. � �

Observation 9. Let 01 ∈ V1 + ?:1∗ and 02 ∈ V2 + ?:2∗ be any 2 elements of the

representative roots V1 + ?
:1∗ and V2 + ?

:2∗ respectively, for V ≠ U2, then,

F? (01 − 02) = F? (V1 − V2).

Proof. We have 2 representative roots of the form V1 + ?
:1∗ and V2 + ?

:2∗. WLOG let

us assume that :1 ≤ :2 and V1 ∈ // ?:1 , V2 ∈ // ?:2 .

We definitely have that these two are different representative roots. So if the first :1

elements of the ?-adic expansion of V2 are equal then the second representative root will

be contained in the first, as the ∗ portion of the first contains all the values of the second

14 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

representative root as well as its subset. So for them to be different representative roots,

?:1 ∤ V2 − V1. Let E? (V1 − V2) = C, C < :1, then for any value H1, H2 in the respective ∗
sets, we will have ?C | (V1 + ?

:1 H1) − (V2 + ?
:2 H2). Note that since :1 > E? (V1 − V2) we

have E? ((V1 + ?
:1 H1) − (V2 + ?

:2 H2)) ≥ E? (V1 − V2).
Now, since ?C |V1−V2 and ?C+1 ∤ V1−V2 we can write V1−V2 = ?C (0+?1) for 0, 1 ∈ // ?:

where 0 ∈ {1, 2, . . . ?−1}. This implies that if ?C+1 | (V1+ ?
:1H1) − (V2+ ?

:2H2), it means

?C+1 |?C (0 + ?1) + ?:1 (H1 − ?
:2−:2 H2) =⇒ ? |0 + ?(· · ·) which can not be true as ? ∤ 0.

So for any value of H1, H2 in the respective ∗ sets of their corresponding representative

roots, we will have E? ((V1 + ?
:1 H1) − (V2 + ?

:2 H2)) = E? (V1 − V2).
Conversely if ∃H1, H2 such that E? ((V1 + ?:1 H1) − (V2 + ?:2 H2)) > E? (V1 − V2), let

; = E? ((V1 + ?:1 H1) − (V2 + ?:2H2)) ≥ :1. Then we have E? (V1 − V2) ≤ ; − 1. So if

?; | (V1 + ?
:1 H1) − (V2 + ?

:2 H2) =⇒ ?; |V1 − V2 (as ; ≤ :1). This is a contradiction as

; > E? (V1 − V2).
This completes the proof of Observation 9. � �

B.2 p-ordering and p-sequence

Observation 10 ([Mau01]). Let (be a subset of integers, let (9 = {B ∈ (| B ≡ 9

(mod ?)} for 9 = 0, 1, ..., ? − 1, then for any G ∈ // , s.t. G ≡ 9 (mod ?),

F?

(∏
08 ∈(

(G − 08)

)
= F?

©­«
∏
08 ∈(9

(G − 08)
ª®
¬
. (1)

Observation 11. Let (be a subset of integers, let (00, 01, 02, ...) be a ?-ordering on (,

then

1. For any G ∈ // , (00 + G, 01 + G, 02 + G, ...) is a ?-ordering on (+ G.

2. For any G ∈ // , (G ∗ 00, G ∗ 01, G ∗ 02, ...) is a ?-ordering on G ∗ (.

Observation 12. Let (be a subset of integers, let (00, 01, 02, ...) be a ?-ordering on (.

Then, for any G ∈ //

1. E? (G ∗ (, :) = E? ((, :) + : · F? (G).
2. E? ((+ G, :) = E? ((, :).

Observation 13. Let (00, 01, ...) be a ?-ordering on // ?: , then (V + 00 ∗ ?
9 , V + 01 ∗

? 9 , V + 02 ∗ ?
9 , ...) is a ?-ordering on V + ? 9∗.

Proof. A simple proof of this theorem follows from Observation 11 and the fact that

1, 2, 3, . . . form an obvious ?-ordering in // ?: . � �

Appendix C Min-heap data structure

A min-heap is a data structure in which each node has at most two children and exactly

one parent node (except root, no parents). The defining property is that the key value of

any node is equal or lesser than the key value of its children.

On algorithms to find ?-ordering 15

3

5 7

11 6 8

9 10

We will use three standard functions on a min-heap with = nodes [CLRS01].

1. Create_Min_Heap((): Takes a set (as input and returns a min-heap with elements

of (as the nodes in Õ(=).
2. Extract_Min(�): Removes the element with the minimum key from the heap and

rebalances the heap structure in Õ (log(=)).

3. Insert(�, 0): Inserts the element 0 into the heap � in Õ (log(=)).

Appendix D Correctness and Complexity of Algorithm 1

D.1 Proof of Theorem 4

Let (0:
0
, 0:

1
, ...) be a ?-ordering on each of the (:’s. We know that Merge() on

((0, (1, ..., (?−1) proceeds in such a way that elements are added to the heap in such a

way that the element 0:
;

is added to the heap only after ∀8 < ;, 0:
8

have already been

added to the ?-ordering. Also, we know at any point, only one element from any (: can

belong to the heap.

We know that at any point, let (00, 01, ...0:−1) be a ?-ordering on (, then the next

element 0: in the ?-ordering on (if and only if

F?
©­«

∏
8∈{0,1,...,:−1}

(0: − 08)
ª®
¬
= min

G∈(\{00,01 ,...0:−1 }

©­«
F?

©­«
∏

8∈{0,1,...,:−1}

(G − 08)
ª®
¬
ª®
¬
.

We know that if at each point, our pick for the next element in the ?-ordering satisfies

this condition, the ?-ordering we get is valid.

Lets say (00, 01, ..., 08) be the ?-ordering we have till now. Let elements currently

the elements (0:
0
, 0:

1
, ..., 0:

8:−1
) of the given ?-ordering on set (: are currently a part of

the ?-ordering. Let the elements (00
80
, 01

81
, ..., 0

?−1

8?−1
) are a part of the min-heap.

Let when we extract the min from the min-heap, we get some value 0:
8:

. If we show

that

F?
©­
«

∏
9∈{0,1,...,8}

(0:8: − 0 9)
ª®
¬
= min

G∈(\{00 ,01 ,...08 }

©­
«
F?

©­
«

∏
9∈{0,1,...,8}

(G − 0 9)
ª®
¬
ª®
¬
,

then we know that 0:
8:

is a valid next element in the ?-ordering and hence Merge() gives

a correct ?-ordering on (.

16 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

We prove this by contradiction. Let there is an element G ∈ (\ {00, 01, .., 08 , 0
:
8:
}

such that

F?
©­
«

∏
9∈{0,1,...,8}

(G − 0 9)
ª®
¬
< F?

©­
«

∏
9∈{0,1,...,8}

(0:8: − 0 9)
ª®
¬
.

Then, we have 2 cases, either G ∈ (: , i.e. G ≡ : mod ? ≡ 0:
8:

mod ? or G ∈ (; for some

; ≠ :, i.e. G ≡ ; mod ? . 0:
8:

mod ?.

Case 1: G ∈ (: .

Our assumption is that

F?
©­«

∏
9∈{0,1,...,8}

(G − 0 9)
ª®
¬
< F?

©­«
∏

9∈{0,1,...,8}

(0:8: − 0 9)
ª®
¬
.

We know that from our assumption that (: ∩ (00, 01, ..., 08) = (0
:
0
, 0:

1
, ..., 0:

8:−1
).

From Observation 10,

F?
©­
«

∏
9∈{0,1,...,8}

(0:8: − 0 9)
ª®
¬
= F?

©­
«

∏
9∈{0,1,...,8: −1}

(0:8: − 0
:
9)

ª®
¬
,

and

F?
©­
«

∏
9∈{0,1,...,8}

(G − 0 9)
ª®
¬
= F?

©­
«

∏
9∈{0,1,...,8: −1}

(G − 0:9)
ª®
¬
.

Since, (0:
0
, 0:

1
, ..., 0:

8:−1
, 0:

8:
, ...) is a valid ?-ordering on (: ,

F?
©­
«

∏
9∈{0,1,...,8}

(0:8: − 0 9)
ª®¬
≤ F?

©­
«

∏
9∈{0,1,...,8}

(G − 0 9)
ª®¬
.

But this is a contradiction.

Case 2: G ∈ (; for some ; ≠ : .

Our assumption is that

F?
©­«

∏
9∈{0,1,...,8}

(G − 0 9)
ª®
¬
< F?

©­«
∏

9∈{0,1,...,8}

(0:8: − 0 9)
ª®
¬
.

Let the element belonging to the set (; in the heap is 0;
8;
. We know that from our

assumption that (; ∩ (00, 01, ..., 08) = (0
;
0
, 0;

1
, ..., 0;

8;−1
). From Observation 10,

F?
©­
«

∏
9∈{0,1,...,8}

(0;8; − 0 9)
ª®¬
= F?

©­
«

∏
9∈{0,1,...,8;−1}

(0;8; − 0
;
9)
ª®¬
,

On algorithms to find ?-ordering 17

and

F?
©­
«

∏
9∈{0,1,...,8}

(G − 0 9)
ª®¬
= F?

©­
«

∏
9∈{0,1,...,8;−1}

(G − 0;9)
ª®¬
.

Since, (0;
0
, 0;

1
, ..., 0;

8;−1
, 0;

8;
, ...) is a valid ?-ordering on (;,

F?
©­«

∏
9∈{0,1,...,8}

(0;8; − 0 9)
ª®
¬
≤ F?

©­«
∏

9∈{0,1,...,8}

(G − 0 9)
ª®
¬
.

Also, since both 0;
8;

and 0:
8:

were part of the heap but �GCA02C"8=() procedure

returned 0:
8:

,

F?
©­«

∏
9∈{0,1,...,8}

(0:8: − 0 9)
ª®
¬
≤ F?

©­«
∏

9∈{0,1,...,8}

(0;8; − 0 9)
ª®
¬
.

Using the above two inequalities,

F?
©­
«

∏
9∈{0,1,...,8}

(0:8: − 0 9)
ª®¬
≤ F?

©­
«

∏
9∈{0,1,...,8}

(G − 0 9)
ª®¬
.

But this is a contradiction.

Since, we arrive at a contradiction in both the cases, hence, our assumption must be

wrong. Hence,

F?
©­
«

∏
8∈{0,1,...,:−1}

(0: − 08)
ª®
¬
= min

G∈(\{00,01 ,...0:−1 }

©­
«
F?

©­
«

∏
8∈{0,1,...,:−1}

(G − 08)
ª®
¬
ª®
¬
.

Hence, our procedure Merge() gives a valid ?-ordering. �

D.2 Proof of Theorem 5

We prove this by induction on the size of (.

If (is a singleton, then the ?-ordering on (is just that element. And hence the

corresponding ?-value is just ?0
= 1. Find_?-Ordering(() sets this value to 1 in step

18. Hence, our assumption is true for |(| = 1.

Let our assumption is true for |(| < :, if we can show it for |(| = :, then by

induction, we know our assumption is true for sets of all sizes.

Let |(| = :, then when we break this set into smaller (0, (1, ..., (?−1 (Steps 21-22),

either all element belong in a single (8 or get distributed into multiple sets. We handle

the two case separately.

18 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Case 1: Let (breaks into smaller (0, (1, ..., (?−1.

In this case, we know all the (0, (1, ..., (?−1 have size less that :. Hence, the sizes

of ((G − G)/? is also less than : for all G ∈ {0, 1, ..., ? − 1}. Hence, we get the correct

?-values for all elements when we call �8=3_%_$A34A8=6(((G − G)/?) in step 24.

From Theorem 12, we know that E? ((8 − 8, :) = E? (((8 − 8)/?, :) + :, hence we

add : to the ?-values of all elements of the output(step 27). We know that E? ((8 , :) =
E? ((8 − 8, :), hence, the ?-values of each element are correct at the end of step 27.

Next, we show that Merge() preserves the ?-values, we’re done, since we know

that Merge() doesn’t update the ?-values of any of the elements. Let an element

@ is added at the 9 Cℎ position in the ?-ordering output by Merge(). Let all the el-

ements before this element are in the set - . Then, we know that the ?-value of

this element is F?

(∏
08 ∈-

(@ − 08)

)
. By Observation 10, we know that this is equal

to F?
©­
«

∏
08 ∈-@ (mod ?)

(@ − 08)
ª®¬
. Since, merge doesn’t re-order the ?-orderings on any input

(G while merging, we know that this is exactly the ?-value of @ from before. Hence,

Merge() preserves the ?-values.

Hence, the ?-values at the end of Merge() are correct (step 28). Hence, Find_?-

Ordering(() gives the correct ?-values.

Case 2: Let all elements of (go into a single (8.

Since, we recursively keep calling Find_?-Ordering(·) on the reduced set, we

know at some point, we would reach case 1. As proven above, at this point, we would

get the correct ?-values. Hence, if we can show that given a correct ?-values in step 24,

Find_?-Ordering(·) outputs the correct ?-values, then by a recursive argument, this

would output the correct ?-values for any set of size :.

Let’s say that all the elements of (fall into some set (G . We assume that Find_?-

Ordering(((8 − 8)/?) outputs the correct ?-values, then if we can prove that we get the

correct ?-values from (, then by the above argument, we are done.

From Theorem 12, we know that E? ((8 − 8, :) = E? (((8 − 8)/?, :) + :, hence we

add : to the ?-values of all elements of the output (step 27). We know that E? ((8 , :) =
E? ((8 − 8, :), hence, the ?-values of each element are correct at the end of step 27.

Since, all the elements in (are in just one (8, Merge() acts as identity. Hence, the

output at the end of Step 28 has the correct ?-values. Hence, Find_?-Ordering(·) gives

the correct ?-values for sets of size :.

Hence, by induction, Find_?-Ordering(·) outputs the correct ?-values on any subset

of integers. �

D.3 Time complexity of Algorithm 1

Theorem 14. Given a set (⊂ // of size = and a prime ?, such that for all elements

0 ∈ (, 0 < ?: for some :, Algorithm 1 returns a ?-ordering on (in Õ (=: log ?) time.

Proof. We break the complexity analysis into 2 parts, the time complexity for merging

the subsets (8’s and the time complexity due the to recursive step.

On algorithms to find ?-ordering 19

Time complexity of Merge((0, (1, ..., (?−1) in Algorithm 1 Let |(0 | + |(1 | + ...+ |(?−1 | =

<. Then, the time complexity of making the heap (Step 7) is Õ (min(<, ?)) (the size of

the heap). Next, the construction of common ?-ordering (Steps 8-14) takes Õ(< log ?)
time, this is because extraction of an element and addition of an element are both

bound by Õ (log ?) and the runs a total of < times. Hence, the total time complexity of

Merge((0, (1, ..., (?−1) is Õ (min(<, ?) + < log ?) = Õ (< log ?) time.

Time complexity of Algorithm 1 Let |(| = = and (⊂ // ?: . Then the recursion depth of

Find_?-Ordering(() is bound by :. Now at each depth, all the elements are distributed

into multiple heaps(of sizes <1, <2, ..., <@). Hence, the sum of sizes of all smaller sets

at a given depth
∑@

8=1
<8 < =. Hence, the time to run any depth is

∑@

8=1
Õ (<8 log ?) =

Õ (= log ?). Hence, total time complexity for : depth is Õ(=: log ?). � �

Appendix E Correctness and Complexity of Algorithm 2

E.1 Proof of Theorem 7

In this appendix we prove that the E0;D0C8>=B array from Algorithm 2 maintains the

correct valuations.

First we initialize the valuations array to zero, which implies that when we have

our ?-ordering as a null set q and add the first element to it, we can select any number

according to definition 6.

Suppose we have generated a ?-ordering upto length =̃ with 81, 82 . . . 8 |(| being

the number of elements from each representative root in (. Now if we add another

element to this ?-ordering, from say the 9 Cℎ representative root, the ?-value contributed

corresponding to each of the representative roots apart from the 9 Cℎ one will be E? (VC −
V 9) where C ≠ 9 , according to Observation 9. Also since we have 8C many elements from

each of CCℎ representative root, the contribution to ?-value will be 8C E? (VC − V 9). Next,

we find the ?-value contributed due to the same representative root.

Notice that, from Observation 13 we will have the elements of the 9 Cℎ representative

root as a ?-ordering as well on V 9 + ?
: 9∗, of length 8 9 . Now by Theorem 11, we will have

this ?-ordering on V 9 + ?
: 9∗ as {V 9 , V 9 + ?

: 9 , V 9 + ?
: 92, . . . V 9 + ?

: 9 (8 9 − 1)}. When we

add another element to this the ?-value contributed due to 9 Cℎ representative root will

be : 9E? (8 9 !).
Summing them the total ?-value at each step, considering the next element to be

added being from 9 Cℎ representative root is
∑

C ∈[|(|];C≠ 9 8C E? (VC − V 9) + : 9E? (8 9 !). We

choose 9 such that this expression is minimum in our algorithm.

Now, we want to show that E0;D0C8>=B[9] =
∑

C ∈[|(|];C≠ 9 8C E? (VC − V 9) + : 9E? (8 9 !).
We do this inductively. First we already have 0 stored in each entry of E0;D0C8>=B. Let,

we have obtained a ?-ordering upto length =̃ with the respective indices as 81, 82 . . . 8 |(|
with the ?-value corresponding to addition of next element from 9 Cℎ representative

root correctly stored in E0;D0C8>=B[9]. Next, when we add an element from say the CCℎ

representative root (C = <8=_8=34G) we need to change the E0;D0C8>=B accordingly.

When we add this element we increase 8C by one (8′C = 8C + 1). Now when we

add another element, say <, (after the last element from the CCℎ representative root),

20 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

if < ≠ C then the new ?-value will be
∑

;∈[|(|];;∉{C ,<} 8;E? (V; − V<) + (8C + 1)E? (VC −
V<) + :<E? (8<!) which is E? (VC − V<) more than the previous E0;D0C8>=B[<]. So

accordingly we add this value in the previous step (when we find C as the <8=_8=34G and

then update in Steps 29-30).

However if this < (the next <8=_8=34G after adding an element from CCℎ representa-

tive root) is same as C, then the ?-value will be
∑

;∈[|(|];;≠C 8;E? (V;− VC) + :CE? ((8C +1)!)
while the previous value of E0;D0C8>=B[C] was

∑
;∈[|(|];;≠C 8;E? (V; − VC) + :C E? (8C !)

and this difference E? ((8C + 1)!) − E? (8C !) is stored in ?-Exponent_Increase(8 9). We

thereby update Steps 31-32 of Algorithm 2 to incorporate this change. Hence E0;D0C8>=B

correctly stores the ?-value as desired. �

E.2 Time complexity of Algorithm 2

Theorem 15. Given a set (⊂ // ?: , for a prime ? and an integer :, that can be

represented in terms of 3 representative roots, Algorithm 2 finds a ?-ordering of length

= for (in Õ (32: log ? + =: log ? + =?) time.

Proof. Let (contains 3 representative roots of // ?: and we want to find the ?-ordering

up to length =, then, Correlate(() runs a double loop, each of size 3, and each iteration

takes Õ(: log ?), hence, Correlate(() takes Õ(32: log ?). ?-Exponent_Increase(=)

runs a single loop of size = where each iteration takes Õ (: log ?) time, hence, it takes

Õ (=: log ?). Then main loop run a loop of size =, inside this loop we doO(3) operations

on elements of size log :, hence, it takes Õ (=3) time. Hence, in total, our algorithm

takes Õ(32: log ? + =: log ? + =3) time. � �

Appendix F Structure of root sets

Observation 16. Let 5 (G) =
∑∞

8=0 18 · G
8 ∈ // ?: [G], for : < ?(: is small), be a

polynomial with root-set �. Let U8 ≡ 9 mod ? for all 8 ∈ [:], be : numbers such that

for no 8, 9 , U8 − U 9 . 0 mod ?2. Let U8 ∈ �, for all 8 ∈ [:], then (9 = {B ∈ // ?: | B ≡
9 mod ?} ⊆ �.

Proof. Let, for all 8 ∈ [:], U; = 9 + ? ∗ V;, then since U; is in the root set of 5 (·),
therefore,

5 (9 + ? ∗ V;) =
∞∑
8=0

1; · (9 + ? ∗ V;)
8 ≡ 0 mod ?: .

Hence,

:−1∑
8=0

?8 · V8; · 68 (9) ≡ 0 mod ?: ,

On algorithms to find ?-ordering 21

where, 68 (G) =
∑∞

==0

(=+8
=

)
· 1=+8 · G

=. Writing this system of equations in the form of

matrices � · - = 0 mod ?: , we get,



1 V0 · · · V
:−1
0

1 V1 · · · V
:−1
1

...
...

. . .
...

1 V:−1 · · · V
:−1
:−1





60(9)
? · 61(9)

...

?:−1 · 6:−1(9)


=



0

0
...

0


mod ?: .

Here, |34C(�) | =

����� ∏
8≠ 9∈[:]

(V8 − V 9)

�����. Since V8 − V 9 . 0 mod ?, therefore, 34C(�) .

0 mod ?. Hence, � has an inverse. Multiplying by the inverse on both sides, we get,



60 (9)
? · 61 (9)

...

?:−1 · 6:−1(9)


=



0

0
...

0


mod ?: , >A,

for 8 ∈ [:], 68 (9) ≡ 0 mod ?:−8 . Hence, for any element 9 + ? · V ∈ (9 , 5 (9 + ? ∗ V) =∑:−1
8=0 ?8 · V8

;
· 68 (9) ≡ 0 mod ?: (since ?8 · 68 (9) ≡ 0 mod ?:). Therefore, all elements

of (9 are a root of 5 (·), or (9 ⊆ �. � �

F.1 Structure of root sets in `̀ p2

From Section 5.1, we know if U = U0 + U1 · ? ∈ // ?2 be a root of some 5 (G) in // ?2 .

Then

5 (U0) + ? · U1 · 5
′(U0) = 0 mod ?2.

Fixing U0 to some 9 , we start looking at structures.

Case 1: root set contains atleast two roots Let, our root set ' 9 contains two distinct

roots, say 9 + U0
1
· ? and 9 + U1

1
· ?. Then,

5 (9) + ? · U0
1 · 5

′(9) = 0 mod ?2,

and

5 (9) + ? · U1
1 · 5

′(9) = 0 mod ?2.

Solving the above 2 equations, we get

5 (9) = 0 mod ?2,

and

5 ′(9) = 0 mod ?.

Hence, any 9 + Ũ1 · ?, for Ũ1 ∈ [?], is a root of the polynomial, or ' 9 = 9 + ? · ∗.
Since, there’s no free variable in ' 9 , we just have 1 root-set of this structure.

22 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Case 2: root set contains one root Let, our root set ' 9 contains just one root, say

9 + U1 · ?. Then,

5 (9) + ? · U1 · 5
′(9) = 0 mod ?2.

One can easily see that no new roots seep in at this point and a root set of this form is

possible1. Hence, ' 9 = 9 + ? · U1, for U1 ∈ [?].

Since, U1 ∈ [?], we just have ? root-sets of this structure.

Case 3: root set is empty Let our root set is empty.2. Hence, ' 9 = ∅.

Since, there’s no free variable in ' 9 , we just have 1 root-set of this structure.

Therefore, #?2
= ? + 2. Hence,

' 9 =



9 + ? · ∗,

9 + ? · U, for U ∈ [?],

∅.

F.2 Structure of root sets in `̀ p3

From Section 5.2, we know if U = U0 + U1 · ? + U2 · ?
2 ∈ // ?3 be a root of some 5 (G)

in // ?3 . Then,

5 (U0) + ? · U1 · 5
′(U0) +

(
(U1)

2 ·
5 ′′(U0)

2
+ U2 · 5

′(U0)

)
· ?2

= 0 mod ?3.

Fixing U0 to some 9 , we start looking at structures.

Case 1: root set contains atleast three roots different at p1 Let, our root set ' 9

contains three roots, say 9 + U0
1
· ? + U0

2
· ?2, 9 + U1

1
· ? + U1

2
· ?2 and 9 + U2

1
· ? + U2

2
· ?2

for U0
1
≠ U1

1
≠ U2

1
. Then, substituting the value and solving the 3 equations, we get

5 (9) = 0 mod ?3,

5 ′(9) = 0 mod ?2,

and

5 ′′(9) = 0 mod ?.

Hence, any 9+Ũ1 ·?+Ũ2 ·?
2, for Ũ1, Ũ2 ∈ [?], is a root of the polynomial, or ' 9 = 9+? ·∗.

Since, there’s no free variable in ' 9 , we just have 1 root-set of this structure.

1 Namely 5 (G) = G − (9 + U1 · ?).
2 Namely 5 (G) = 0, where 0 ≠ 0

On algorithms to find ?-ordering 23

Case 2: root set contains two roots different at p1 Let, our root set ' 9 contains three

roots, say 9 + U0
1
· ? + U0

2
· ?2 and 9 + U1

1
· ? + U1

2
· ?2 for U0

1
≠ U1

1
. Then, substituting the

value and solving the 2 equations, we get

5 (9) = 0 mod ?2,

and

5 ′(9) = 0 mod ?.

Hence, any 9 + U0
1
· ? + Ũ2 · ?

2, for Ũ2 ∈ [?], and 9 + U1
1
· ? + Ũ2 · ?

2, for Ũ2 ∈ [?], is a

root of the polynomial, or ' 9 =
(
9 + ? · U0

1
+ ?2 · ∗

)
∪

(
9 + ? · U1

1
+ ?2 · ∗

)
, for U0

1
≠ U1

1

and U0
1
, U1

1
∈ {0, 1, ...? − 1}.

Since, U0
1
≠ U1

1
and U0

1
, U1

1
∈ {0, 1, ...? − 1}, we just have

? · (?−1)
2

root-sets of this

structure.

Case 3: root set contains two roots same at p1 Let, our root set ' 9 contains three

roots, say 9 + U1 · ? + U
0
2
· ?2 and 9 + U1 · ? + U

1
2
· ?2 for U0

2
≠ U1

2
. Then, substituting the

value and solving the 2 equations, we get

5 (9) = 0 mod ?2,

and

5 ′(9) = 0 mod ?.

Hence, any 9 + U1 · ? + Ũ2 · ?
2, for Ũ2 ∈ [?], is a root of the polynomial, or ' 9 =

9 + ? · U1 + ?
2 · ∗, for U1, U

1
1
∈ {0, 1, ...? − 1}.

Since, U1 ∈ {0, 1, ...? − 1}, we just have ? root-sets of this structure.

Case 4: root set contains one root Similar to Appendix F.1, we can have just one

root U = 9 + U1 · ? + U2 · ?
2 as a root of 5 (G) and no new roots seep in. Hence,

' 9 = 9 + ? · U1 + ?
2 · U2, for U1, U2 ∈ [?].

Since, U1, U2 ∈ [?], we just have ?2 root-set of this structure.

Case 5: root set is empty Similar to Appendix F.1, our root set can be empty. Hence,

' 9 = ∅.
Since, there’s no free variable in ' 9 , we just have 1 root-set of this structure.

Therefore, #?3
=

3?2+?+4
2

. Hence,

' 9 =




9 + ? · ∗,

(9 + ? · U1 + ?
2∗) ∪ (9 + ? · U2 + ?

2∗), for U1 ≠ U2 ∈ [?],

9 + ? · U + ?2 ∗ , for U ∈ [?],

9 + ? · U1 + ?
2 · U2, for U1, U2 ∈ [?],

∅.

24 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

F.3 Structure of root sets in `̀ p4

From Section 5.3, we know if U = U0 + U1 · ? + U2 · ?
2 + U3 · ?

3 ∈ // ?4 be a root of

some 5 (G) in // ?4 . Then,

5 (U0) + ? · U1 · 5
′(U0) +

(
(U1)

2 ·
5 ′′(U0)

2
+ U2 · 5

′(U0)

)
· ?2

+

(
(U1)

3 ·
5 ′′′(U0)

6
+ 2 · U1 · U2 · 5

′′(U0) + U3 · 5
′(U0)

)
· ?3

= 0 mod ?4.

Fixing U0 to some 9 , we start looking at structures.

Case 1: root set contains atleast four roots different at p1 Let, our root set ' 9 contains

four roots different at ?1. Then, substituting the value and solving the 4 equations, we

get

5 (9) = 0 mod ?4,

5 ′(9) = 0 mod ?3,

5 ′′(9) = 0 mod ?2,

and

5 ′′′(9) = 0 mod ?.

Hence, ' 9 = 9 + ? · ∗.

Since, there’s no free variable in ' 9 , we just have 1 root-set of this structure.

Case 2: root set contains three roots different at p1 Let, our root set ' 9 contains

three roots different at ?1. Then, substituting the value and solving the 3 equations, we

get

5 (9) = 0 mod ?3,

5 ′(9) = 0 mod ?2,

and

5 ′′(9) = 0 mod ?.

Hence,

' 9 = (9 + ? · U1 + ?
2∗) ∪ (9 + ? · U2 + ?

2∗) ∪ (9 + ? · U3 + ?
2∗)

Since, U1 ≠ U2 ≠ U3 ∈ [?], we have
? (?−1) (?−2)

6
such root sets.

On algorithms to find ?-ordering 25

Case 3: root set contains three roots of which 2 are different at p1 and 2 are different

at p2 Similar to last case, we get

5 (9) = 0 mod ?3,

5 ′(9) = 0 mod ?2,

and

5 ′′(9) = 0 mod ?.

Hence,

' 9 = (9 + ? · U1 + ?
2∗) ∪ (9 + ? · U2 + ?

2∗)

Since, U1 ≠ U2 ∈ [?], we have
? (?−1)

2
such root sets.

Case 4: root set contains two roots different at p2 Similar to last case, we get

5 (9) = 0 mod ?3,

5 ′(9) = 0 mod ?2,

and

5 ′′(9) = 0 mod ?.

Hence,

' 9 = (9 + ? · U1 + ?
2∗)

Since, U1 ∈ [?], we have ? such root sets.

Case 5: root set contains two roots different at p1 Let, our root set ' 9 contains two

roots different at ?1. Then, substituting the value and solving the 2 equations, we get

5 (9) = 0 mod ?2,

and

5 ′(9) = 0 mod ?.

Hence,

' 9 = (9 + ? · U1 + ?
2 · V1 + ?

3∗) ∪ (9 + ? · U2 + ?
2 · V2 + ?

3∗)

Since, U1, U2, V1, V2 ∈ [?] and U1 ≠ U2, we have
?3 (?−1)

2
such root sets.

Case 6: root set contains two roots different at p3 Let, our root set ' 9 contains two

roots different at ?3. Then, substituting the value and solving the 2 equations, we get

5 (9) = 0 mod ?2,

and

5 ′(9) = 0 mod ?.

Hence,

' 9 = (9 + ? · U1 + ?
2 · U2 + ?

3 · ∗)

Since, U1, U2 ∈ [?], we have ?2 such root sets.

26 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Case 7: root set is a single element Similar to the Appendix F.2,

' 9 = (9 + ? · U1 + ?
2 · U2 + ?

3 · U3)

Since, U1, U2, U3 ∈ [?], we have ?3 such root sets.

Case 8: root set is a empty

' 9 = ∅

We have 1 such root set.

Therefore, #?4
=

3?4+4?3+6?2+5?+12

6
. Hence,

' 9 =




9 + ? · ∗,

(9 + ? · U1 + ?
2∗) ∪ (9 + ? · U2 + ?

2∗) ∪ (9 + ? · U3 + ?
2∗), for U1 ≠ U2 ≠ U3 ∈ [?],

(9 + ? · U1 + ?
2∗) ∪ (9 + ? · U2 + ?

2∗), for U1 ≠ U2 ∈ [?],

9 + ? · U + ?2 ∗ , for U ∈ [?],

(9 + ? · U1 + ?
2 · V1 + ?

3∗) ∪ (9 + ? · U2 + ?
2 · V2 + ?

3∗), for U1 ≠ U2 V1, V2 ∈ [?],

9 + ? · U1 + ?
2 · U2 + ?

3 · ∗, for U1, U2 ∈ [?],

9 + ? · U1 + ?
2 · U2 + ?

3 · U3, for U1, U2, U3 ∈ [?],

∅.

	On algorithms to find p-ordering

