Skip to main content

Algorithmic Analysis of Priority-Based Bin Packing

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12601))

Included in the following conference series:

Abstract

This paper is concerned with a new variant of Traditional Bin Packing (TBP) called Priority-Based Bin Packing with Subset Constraints (PBBP-SC). In a TBP instance, we are given a collection of items \(\{a_{1}, a_{2}, \ldots a_{n}\}\), with \(a_{i} \in (0, 1)\) and a collection of unit-size bins \(\{B_{1}, B_{2}, \ldots , B_{m} \}\). One problem associated with TBP is the bin minimization problem. The goal of this problem is to pack the items in as few bins as possible. In a PBBP-SC instance, we are given a collection of unit-size items and a collection of bins of varying capacities. Associated with each item is a positive integer which is called its priority. The priority of an item indicates its importance in a (possibly infeasible) packing. As with the traditional case, these items need to be packed in the fewest number of bins. What complicates the problem is the fact that each item can be assigned to only one of a select set of bins, i.e., the bins are not interchangeable. We investigate several problems associated with PBBP-SC. Checking if there is a feasible assignment to a given instance is one problem. Finding a maximum priority assignment in case of the instance being infeasible is another. Finding an assignment with the fewest number of bins to pack a feasible instance is a third. We derive a number of results from both the algorithmic and computational complexity perspectives for these problems.

This research is supported in part by the Air-Force of Scientific Research through Grant FA9550-19-1-0177 and in part by the Air-Force Research Laboratory, Rome through Contract FA8750-17-S-7007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez-Valdés, R., Parreño, F., Tamarit, J.M.: A branch-and-cut algorithm for the pallet loading problem. Comput. Oper. Res. 32, 3007–3029 (2005)

    Article  MathSciNet  Google Scholar 

  2. Anari, N., Vazirani, V.V.: Matching is as easy as the decision problem, in the NC model. CoRR, abs/1901.10387 (2019)

    Google Scholar 

  3. Baldi, M.M., Bruglieri, M.: On the generalized bin packing problem. ITOR 24(3), 425–438 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Ballew, B.: The distributor’s three-dimensional pallet-packing problem: a mathematical formulation and heuristic solution approach, p. 111, March 2000

    Google Scholar 

  5. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small depth circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 75–85. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0_6

    Chapter  Google Scholar 

  6. Chandran, B.G., Hochbaum, D.S.: Practical and theoretical improvements for bipartite matching using the pseudoflow algorithm. CoRR, abs/1105.1569 (2011)

    Google Scholar 

  7. Csirik, J., Johnson, D.S., Kenyon, C., Orlin, J.B., Shor, P.W., Weber, R.R.: Fast algorithms for bin packing. J. Comput. Syst. Sci. 8(8), 272–314 (1974)

    MathSciNet  Google Scholar 

  8. Paul Davies, A., Bischoff, E.E.: Weight distribution considerations in container loading. Eur. J. Oper. Res. 114(3), 509–527 (1999)

    Article  Google Scholar 

  9. Escoffier, B., Paschos, V.T.: Completeness in approximation classes beyond apx. Theor. Comput. Sci. 359(1), 369–377 (2006)

    Article  MathSciNet  Google Scholar 

  10. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithm, 1st edn. Springer, Heidelberg (2010)

    Book  Google Scholar 

  11. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman Company, San Francisco (1979)

    MATH  Google Scholar 

  13. Hodgson, T.J.: A combined approach to the pallet loading problem. IIE Trans. 14(3), 175–182 (1982)

    Article  Google Scholar 

  14. JaJa, J.: Introduction to Parallel Algorithms, 1st edn. Addison Wesley, Boston (1992)

    MATH  Google Scholar 

  15. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci. 79(1), 39–49 (2013)

    Article  MathSciNet  Google Scholar 

  16. Jansen, K., Solis-Oba, R.: An asymptotic approximation algorithm for 3D-strip packing. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, 22–26 January 2006, pp. 143–152. ACM Press (2006)

    Google Scholar 

  17. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull. EATCS, 41–71 (2011)

    Google Scholar 

  18. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. John Wiley, Hoboken (1990)

    MATH  Google Scholar 

  19. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John Wiley, New York (1999)

    MATH  Google Scholar 

  20. Paquay, C., Limbourg, S., Schyns, M.: A tailored two-phase constructive heuristic for the three-dimensional multiple bin size bin packing problem with transportation constraints. Eur. J. Oper. Res. 267(1), 52–64 (2018)

    Article  MathSciNet  Google Scholar 

  21. Paschos, V.: An overview on polynomial approximation of NP-hard problems. Yugoslav J. Oper. Res. 19, 3–40 (2009)

    Article  MathSciNet  Google Scholar 

  22. Perboli, G., Gobbato, L., Perfetti, F.: Packing problems in transportation and supply chain: new problems and trends. Proc. - Soc. Behav. Sci. 111(5), 672–681 (2014)

    Article  Google Scholar 

  23. Ram, B.: The pallet loading problem: a survey. Int. J. Prod. Econ. 28, 217–225 (1992)

    Article  Google Scholar 

  24. Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin packing and scheduling problems. Theor. Comput. Sci. 600, 155–170 (2015)

    Article  MathSciNet  Google Scholar 

  25. Stockmeyer, L., Vishkin, U.: Simulation of parallel random access machines by circuits. SIAM J. Comput. 13, 409–422 (1984)

    Article  MathSciNet  Google Scholar 

  26. Subramani, K., Caskurlu, B., Acikalin, U.U.: Security-aware database migration planning. In: Brandic, I., Genez, T.A.L., Pietri, I., Sakellariou, R. (eds.) ALGOCLOUD 2019. LNCS, vol. 12041, pp. 103–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58628-7_7

    Chapter  Google Scholar 

  27. Subramani, K., Caskurlu, B., Velasquez, A.: Minimization of testing costs in capacity-constrained database migration. In: Disser, Y., Verykios, V.S. (eds.) ALGOCLOUD 2018. LNCS, vol. 11409, pp. 1–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19759-9_1

    Chapter  Google Scholar 

  28. Terno, J., Scheithauer, G., Sommerweiß, U., Riehme, J.: An efficient approach for the multi-pallet loading problem. Eur. J. Oper. Res. 123(2), 372–381 (2000)

    Article  MathSciNet  Google Scholar 

  29. Vargas-Osorio, S., Zuniga, C.: A literature review on the pallet loading problem. Lampsakos 15, 69–80 (2016)

    Article  Google Scholar 

  30. Zhou, K.: The pallet loading method of single category cargo based on railway containerized transport. In: Proceedings of the 2018 10th International Conference on Computer and Automation Engineering, ICCAE 2018, Brisbane, Australia, 24–26 February 2018, pp. 243–249. ACM (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Subramani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wojciechowski, P., Subramani, K., Velasquez, A., Caskurlu, B. (2021). Algorithmic Analysis of Priority-Based Bin Packing. In: Mudgal, A., Subramanian, C.R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2021. Lecture Notes in Computer Science(), vol 12601. Springer, Cham. https://doi.org/10.1007/978-3-030-67899-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67899-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67898-2

  • Online ISBN: 978-3-030-67899-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics