
ar
X

iv
:2

01
0.

05
18

6v
1 

 [
cs

.D
S]

  1
1 

O
ct

 2
02

0

On Structural Parameterizations of Load

Coloring

I. Vinod Reddy

Department of Electrical Engineerng and Computer Science
Indian Institute of Technology Bhilai, Raipur, India

vinod@iitbhilai.ac.in,

Abstract. Given a graph G and a positive integer k, the 2-Load Col-

oring problem is to check whether there is a 2-coloring f : V (G) → {r, b}
of G such that for every i ∈ {r, b}, there are at least k edges with both
end vertices colored i. It is known that the problem is NP-complete even
on special classes of graphs like regular graphs. Gutin and Jones (Inf Pro-
cess Lett 114:446-449, 2014) showed that the problem is fixed-parameter
tractable by giving a kernel with at most 7k vertices. Barbero et al. (Al-
gorithmica 79:211-229, 2017) obtained a kernel with less than 4k vertices
and O(k) edges, improving the earlier result.
In this paper, we study the parameterized complexity of the problem with
respect to structural graph parameters. We show that 2-Load Coloring

cannot be solved in time f(w)no(w), unless ETH fails and it can be
solved in time nO(w), where n is the size of the input graph, w is the
clique-width of the graph and f is an arbitrary function of w. Next,
we consider the parameters distance to cluster graphs, distance to co-
cluster graphs and distance to threshold graphs, which are weaker than
the parameter clique-width and show that the problem is fixed-parameter
tractable (FPT) with respect to these parameters. Finally, we show that
2-Load Coloring is NP-complete even on bipartite graphs and split
graphs.

1 Introduction

Given a graph G and a positive integer c, the load distribution of a c-coloring
f : V (G) → [c] is a tuple (f1, . . . , fc), where fi is the number of edges with at
least one end point colored with i. The c-Load Coloring problem is to find
a coloring f such that the function ℓf(G) = max{fi : i ∈ [c]} is minimum. We
denote this minimum by ℓ(G). Ahuja et al [1] showed that the problem is NP-
hard on general graphs when c = 2. They also gave a polynomial time algorithm
for 2-Load Coloring on trees.

In a 2-coloring f : V (G) → {r, b}, an edge is called red (resp. blue) if both
end vertices are colored with r (resp. b). We use rf and bf to denote the number
of red and blue edges in a 2-coloring f of G. Let µf (G) = min{rf , bf} and µ(G) is
the maximum of µf (G) over all possible 2-colorings of G. Ahuja et al. [1] showed
that the 2-Load Coloring problem is equivalent to maximizing µ(G) over all
possible 2-colorings of G, in particular they showed that ℓ(G) = |E(G)| − µ(G).

http://arxiv.org/abs/2010.05186v1


Input: A graph G = (V,E) and an integer k
Question: Does there exists a coloring f : V (G) → {r, b} such that µ(G) ≥
k? (i.e, rf ≥ k and bf ≥ k)

The above version of the load coloring problem has been studied from the
parameterized complexity perspective. Gutin et al. [9] proved that the problem
admits a polynomial kernel (with at most 7k vertices) parameterized by k. They
also showed that the problem is fixed-parameter tractable when parameterized
by the tree-width of the input graph. More recently, Barbero et al. [2] obtained
a kernel for the problem with at most 4k vertices improving the result of [9].

In this paper, we study the following variant of the load coloring problem.

2-Load Coloring

Input: A graph G = (V,E) and integers k1 and k2
Question: Does there exists a coloring f : V (G) → {r, b} such that rf ≥ k1
and bf ≥ k2?

Our contributions. In this paper, we study the 2-Load Coloring problem from
the viewpoint of parameterized complexity. A parameterized problem with input
size n and parameter k is called fixed-parameter tractable (FPT) if it can be
solved in time f(k)nO(1), where f is a function only depending on the parameter
k (for more details on parameterized complexity refer to the text [5]). There are
many possible parameterizations for 2-Load Coloring. One such parameter is
the size of the solution. The problem admits a linear kernel [9] with respect to
the size of the solution. In this paper, we study the 2-Load Coloring problem
with respect to various structural graph parameters. These parameters measure
the complexity of the input rather than the problem itself. Tree-width is one of
the well-known structural graph parameters. The 2-Load Coloring problem
is FPT when parameterized by tree-width [9] of the input graph.

Even though tree-width is a widely used graph parameter for sparse graphs,
it is not suitable for dense graphs, even if they have a simple structure. In Sec-
tion 3, we consider the graph parameter clique-width introduced by Courcelle
and Olariu [4], which is a generalization of the parameter tree-width. We show
that 2-Load Coloring can be solved in time nO(w), and cannot be solved in
f(w)no(w) unless ETH fails, where w is the clique-width of the n vertex input
graph and f is an arbitrary function of w. Next, we consider the parameters
distance to cluster graphs, distance to co-cluster graphs, and distance to thresh-
old graphs. These parameters are weaker than the parameter clique-width in the
sense that they are a subclass of bounded clique-width graphs. Thus studying
the parameterized complexity of 2-Load Coloring with respect to these pa-
rameters reduces the gap between tractable and intractable parameterizations.
In Section 4, we show that 2-Load Coloring is fixed-parameter tractable with

2



Table 1: Known and new parameterized results for 2-Load Coloring

Parameter Results

size of the solution Linear kernel [2,9]

tree-width FPT [9]

clique-width(w) nO(w) algorithm (Theorem 1)

no f(w)no(w) algorithm (Theorem 2)

distance to cluster graphs FPT (Theorem 3)

distance to co-cluster graphs FPT (Theorem 4)

distance to threshold graphs FPT (Theorem 5)

bipartite graphs para-NP-hard (Theorem 6)

split graphs para-NP-hard (Theorem 7)

respect to the parameters distance to cluster, distance to co-cluster and distance
to threshold graphs. Finally in Section 5, we show that 2-Load Coloring is
NP-complete on bipartite graphs and split graphs. Table 1 gives an overview of
our results.

2 Preliminaries

In this section, we introduce some basic notation and terminology related to
graph theory and parameterized complexity. For k ∈ N, we use [k] to denote
the set {1, 2, . . . , k}. If f : A → B is a function and C ⊆ A, f |C denotes the
restriction of f to C, that is f |C : C → B such that for all x ∈ C, f |C(x) = f(x)
All graphs we consider in this paper are undirected, connected, finite and simple.
For a graph G = (V,E), by V (G) and E(G) we denote the vertex set and edge
set of G respectively. We use n to denote the number of vertices and m to denote
the number of edges of a graph. An edge between vertices x and y is denoted as
xy for simplicity. For a subset X ⊆ V (G), the graph G[X ] denotes the subgraph
of G induced by vertices of X and EG[X ] denote the set of edges having both
end vertices in the set X . For subsets X,Y ⊆ V (G), EG[X,Y ] denote the set of
edges connecting X and Y .

For a vertex set X ⊆ V (G), we denote G −X , the graph obtained from G
by deleting all vertices of X and their incident edges. For a vertex v ∈ V (G),
by N(v), we denote the set {u ∈ V (G) | vu ∈ E(G)} and we use N [v] to
denote the set N(v) ∪ {v}. The neighbourhood of a vertex set S ⊆ V (G) is
N(S) = (∪v∈V (G)N(v)) \ S. A vertex is called universal vertex if it is adjacent
to every other vertex of the graph. For more details on standard graph-theoretic
notation and terminology, we refer the reader to the text [6].

2.1 Graph classes

We now define the graph classes which are considered in this paper. A graph is
bipartite if its vertex set can be partitioned into two disjoint sets such that no

3



two vertices in the same set are adjacent. A cluster graph is a disjoint union of
complete graphs. A co-cluster graph is the complement graph of a cluster graph.
A graph is a split graph if its vertices can be partitioned into a clique and an
independent set. Split graphs are (C4, C5, 2K2)-free. A graph is a threshold graph

if it can be constructed from the one-vertex graph by repeatedly adding either an
isolated vertex or a universal vertex. The class of threshold graphs is the intersec-
tion of split graphs and cographs [10]. Threshold graphs are (P4, C4, 2K2)-free.
We denote a split graph (resp. threshold graph) with G = (C, I) where C and I
denotes the partition of G into a clique and an independent set.

For a graph class F the distance to F of a graph G is the minimum number
of vertices that have to be deleted from G in order to obtain a graph in F . The
parameters distance to cluster graphs [8], distance to co-cluster graphs, distance
to threshold graphs [3] can be computed in FPT time.

2.2 Clique-width

The clique-width of a graph G denoted by cw(G), is defined as the minimum
number of labels needed to construct G using the following four operations:

i. Introducing a vertex. Φ = v(i), creates a new vertex v with label i. GΦ is a
graph consisting a single vertex v with label i.

ii. Disjoint union. Φ = Φ′ ⊕ Φ′′, GΦ is a disjoint union of labeled graphs GΦ′

and GΦ′′

iii. Introducing edges. Φ = ηi,j(Φ
′), connects each vertex with label i to each

vertex with label j (i 6= j) in GΦ′ .

iv. Renaming labels. Φ = ρi→j(Φ
′): each vertex of label i is changed to label j

in GΦ′ .

An expression build from the above four operations using w labels is called as
w-expression. In otherwords, the clique-width of a graph G, is the minimum w
for which there exists a w-expression that defines the graph G. A w-expression
Ψ is a nice w-expression of G, if no edge is introduced twice in Ψ .

3 Graphs of Bounded Clique-width

3.1 Upper bound

In this section, we present an algorithm for solving 2-Load Coloring which
runs in time nO(w) on graphs of clique-width at most w.

Theorem 1. 2-Load Coloring can be solved in time nO(w), where w is the

clique-width of the input graph.

Proof. The algorithm is based on a dynamic programming over the w-expression
of the input graph G. We assume that the w-expression Ψ defining G is nice,
that is every edge is introduced exactly once in Ψ .

For each subexpression Φ of Ψ ,

4



OPT (Φ, n1,r, n1,b, n2,r, n2,b, . . . , nw,r, nw,b, k1)

denotes maximum number of blue edges that can be obtained in a 2-coloring
f : V (GΦ) → {r, b} of GΦ with the constraint that number of red edges is at
least k1 in GΦ and the number of vertices of label i in GΦ that are colored with
a color ℓ in GΦ is ni,ℓ, where ℓ ∈ {r, b}, i ∈ [w].

If there are no colorings satisfying the constraintOPT (Φ, n1,r, n1,b, . . . , nw,r, nw,b, k1),
then we set its value equal to -∞. Observe that G is a Yes-instance of 2-Load
Coloring if and only if OPT (Ψ, ., . . . , ., k1) ≥ k2, for some 2-coloring of GΨ .

Now we give the details of calculating the values of OPT (Φ, ) at each oper-
ation.

1. Φ = v(i). In this case GΦ contains one vertex of label i and no edges. Hence
OPT (Φ, 0, 0, . . . ni,r = 1, 0, . . . 0, k1 = 0) = 0 and OPT (Φ, 0, 0, . . .0, ni,b =
1, 0, . . . 0, 0, k1 = 0) = 0. Otherwise OPT (Φ, . . . , k1) = −∞.

2. Φ = ρi→j(Φ
′).

All vertices of label i are relabled to j by ρi→j operation in GΦ, hence, there
are no vertices of label i in GΦ, so ni,r = ni,b = 0. Let c be a coloring cor-
responding to an entry OPT (Φ, n1,r, n1,b, . . . , nw,r, nw,b, k1). Then c is also a
coloring ofGΦ′ , corresponding to the entryOPT (Φ′, n′

1,r, n
′

1,b, . . . , n
′

w,r, n
′

w,b, k1),
where n′

i,ℓ + n′

j,ℓ = nj,ℓ for ℓ ∈ {r, b} and n′

p,ℓ = np,ℓ for all p ∈ [w] − {i, j}
and ℓ ∈ {r, b}. The number of red and blue edges in GΦ is the same as that
in GΦ′ with respect to the coloring c . Hence, we have the following relation.

OPT (Φ, n1,r, n1,b, . . . , nw,r, nw,b, k1) =



max



OPT (Φ′, n′

1,r, . . . , n
′

w,b, k1)

∣∣∣∣∣∣

n′

i,ℓ + n′

j,ℓ = nj,ℓ, ni,ℓ = 0 for each ℓ ∈ {r, b}

and np,ℓ = n′

p,ℓ for all p ∈ [w] − {i, j}

and ℓ ∈ {r, b}





−∞, otherwise

3. Φ = Φ′ ⊕ Φ′′. As this operation does not add new edges, any coloring c
corresponding to OPT (Φ, n1,r, n1,b, . . . , nw,r, nw,b, k1) is split between two
colorings c′ = c|V (GΦ′ ) and c′′ = c|V (GΦ′′) respectively. As GΦ is the disjoint
union of GΦ′ and GΦ′′ , the number of red and blue edges edges in GΦ with
respect to c is a sum of number red and blue edges with respect to c′ and c′′

in the graphs GΦ′ and GΦ′′ .

OPT (Φ, n1,r, n1,b, . . . , nw,r, nw,b, k1) =

max
n′

i,a + n′′

i,a = ni,a

k′1 + k′′1 = k1

{
OPT (Φ′, n′

1,r, . . . , n
′

w,b, k
′

1) +OPT (Φ′′, n′′

1,r, . . . , n
′′

w,b, k
′′

1 )
}

4. Φ = ηi,j(Φ
′). The graph GΦ is obtained from GΦ′ by adding the edges be-

tween each vertex of label i to each vertex of label j. Any coloring c of GΦ

5



is also a coloring of GΦ′ . As given w-expression is nice, every edge is which
is added by this operation was not present in GΦ′ . Therefore ηi,j operation
on GΦ′ creates ni,r ·nj,r many red edges and ni,b ·nj,b blue edges. Hence, we
have the following relation

OPT (Φ, n1,r, . . . , nw,b, k1) = OPT (Φ′, n1,r, . . . , nw,b, k1 − ni,r · nj,r) + ni,b · nj,b

We have described the recursive formulas for all possible cases. The correctness
of the algorithm follows from the description of the procedure. The number of
entries in the OPT table is at most |Ψ |nO(w). We can compute each entry of
the OPT table in nO(w) time. The maximum number of blue edges that can be
obtained in GΨ is equals to maxn1,r ,...,nw,b

OPT (Ψ, n1,r, n1,b, . . . , nw,r, nw,b, k1)

which can be computed in nO(w) time. This proves that 2-Load Coloring can
be solved in time nO(w) on graphs of clique-width at most w. ⊓⊔

3.2 Lower Bound

We now show the lower bound complementing with the corresponding upper
bound result of the previous section. To prove our result we give a linear FPT

reduction from the Minimum Bisection problem. In the Minimum Bisection

problem, we are given a graph G with an even number of vertices and a positive
integer k, and the goal is to determine whether there is a partition of V (G) into
two sets V1 and V2 of equal size such that |EG[V1, V2]| ≤ k. Fomin et al. [7]
showed that Minimum Bisection cannot be solved in time f(w)no(w) unless
ETH fails.

Theorem 2. The 2-Load Coloring problem cannot be solved in time f(w)no(w)

unless ETH fails. Here, w is the clique-width of n vertex input graph.

Proof. We give a reduction from the Minimum Bisection problem to the 2-
Load Coloring problem. Let (G, k) be an instance of Minimum Bisection.
We construct a graph H as follows.

1. For every vertex v ∈ V (G), we introduce two vertices av, bv in H . Let A =
{av1 , . . . , avn} and B = {bv1 , . . . , bvn}

2. For every edge uv ∈ E(G), we add the edges auav and bubv to H .
3. Finally, for every vertex avi ∈ A and every vertex bvj ∈ B add the edge

avibvj to H .

It is easy to see that the graph H has 2n vertices and 2m + n2 edges and the
construction of H can be done in polynomial time. Moreover, if cw(G) = w
with w-expression ΦG, then we can construct a (w + 1)-expression ΦH of H by
taking two disjoint copies of ΦG and relabel every vertex in the first copy with
the label w + 1 and every vertex in the second copy with some arbitrary label
ℓ ∈ [w] and finally add edges between both the copies using ηw+1,ℓ. This shows
that cw(H) ≤ w + 1. Let us set k1 = k2 = m − k + n2/4. We now show that
(G, k) is a Yes instance of Minimum Bisection if and only if (H, k1, k2) is a
Yes instance of 2-Load Coloring.

6



Forward direction. Let (V1, V2) be a partition of V (G) such that |EG[V1, V2]| ≤ k
and |V1| = |V2|. We construct a 2-coloring f : V (H) → {r, b} of H as follows.
For each v ∈ V (G), f(av) = r and f(bv) = b if v ∈ V1 and f(av) = b and
f(bv) = r if v ∈ V2. Let Ar = {av : f(av) = r}, Ab = {av : f(av) = b}
and Br = {bv : f(bv) = r}, Bb = {bv : f(bv) = b}. It is easy to see that
|Ar| = |Ab| = |Br| = |Bb| = n/2.

rf = |EH [Ar]|+ |EH [Br]|+ |EH [Ar, Br]| = m− k + n2/4 = k1

Similarly, we can show that bf = k2. Therefore (H, k1, k2) is a Yes instance
of 2-Load Coloring.

Reverse direction. Let f : V (H) → {r, b} be a 2-coloring of H such that rf = k1
and bf = k2. Let Ar = {av : f(av) = r}, Ab = {av : f(av) = b} and Br = {bv :
f(bv) = r}, Bb = {bv : f(bv) = b}. Let Vr = Ar ∪Br and Vb = Ab ∪Bb. Then we
have |EH [Vr, Vb]| = 2m+ n2 − rf − bf = 2k + n2/2.

Let V1 := {v : f(av) = r} and V2 := {v : f(av) = b}. We show that
|EG(V1, V2)| ≤ k and |V1| = |V2|. Let |Ab| = p and |Bb| = q such that p+q = |Vb|.
Then we have |Ar | = n− p and |Br| = n− q.

We know that

|EH [Vr ]|+ |EH [Vb]| = k1 + k2 = 2m− 2k + n2/2

|EH [Ar]|+|EH [Br]|+|EH [Ar, Br]|+|EH [Ab]|+|EH [Bb]|+|EH [Ab, Bb]| = 2m−2k+n2/2

|EH [Ar]|+ |EH [Br]|+(n−p)(n−q)+ |EH [Ab]|+ |EH [Bb]|+pq = 2m−2k+n2/2

After simplifying we get (n− p)(n− q) + pq = n2/2. Which implies p = q =
n/2, that is |Ar| = |Ab| = |Br| = |Bb| = n/2. Hence |V1| = |V2| = n/2, that is
(V1, V2) is a bisection of G.

Finally, we show that |EG[V1, V2]| ≤ k. We know that |EH [Vr, Vb]| = 2k +
n2/2.

|EH [Vr , Vb]| = |EH [Ar , Ab]|+|EH [Br, Bb]|+|EH [Ar, Bb]|+|EH [Ab, Br]| = 2k+n2/2

By the construction of H we have |EH [Ar, Ab]| = |EH [Br, Bb]|. Therefore we get

2|EH [Ar, Ab]|+ n2/4 + n2/4 = 2k + n2/2

Which implies |EH [Ar, Ab]| = k and hence |EG[V1, V2]| = k. Therefore (G, k) is
a Yes instance of Minimum Bisection. This concludes the proof.

4 Parameterized Algorithms

Clique-width of cluster graphs, co-cluster graphs and threshold graphs is at most
two. Hence, from the Theorem 1, 2-Load Coloring is polynomial time solvable
on these graph classes. In this section, we show that 2-Load Coloring is FPT
parameterized by distance to cluster graphs, distance to co-cluster graphs and
distance to threshold graphs.

7



4.1 Distance to Cluster Graphs

Theorem 3. 2-Load Coloring is fixed-parameter tractable parameterized by

the distance to cluster graphs.

Proof. Let (G,X, k1, k2) be a 2-Load Coloring instance, where X ⊆ V (G)
of size k such that G −X is a disjoint union of cliques C1, C2, . . . , Cℓ. We first
guess the colors of vertices in X in an optimal 2-coloring of G. This can be done
in O(2k) time. Let h : X → {r, b} be such a coloring. Without loss of generality
we assume that X is an independent set in G. Otherwise, let er and eb be the
number of red and blue edges in the coloring h having both end vertices in the set
X . We build the new instance (G′, X, k′1, k

′

2) of 2-Load Coloring, where G′ is
the graph obtained from G by deleting the edges having both their end vertices
in X and k′1 = k1 − er and k′2 = k2 − eb. It is easy to see that (G,X, k1, k2) is a
Yes instance of 2-Load Coloring iff there exists a 2-coloring g of G′ such that
g|X = h and rg ≥ k′1 and bg ≥ k′2. Hence, we assume that X is an independent
set in G.

For each i ∈ [ℓ], let Gi = G[X ∪ Ci] be the subgraph of G induced by the
vertices of the clique Ci and the set X .

The algorithm is based on dynamic programming technique, which has two
phases. In phase-1, given a graph Gi and non-negative integers q and nr

i , we find
a 2-coloring of Gi that maximizes the number of blue edges with the constriant
that there are at least q red edges in Gi and nr

i red vertices in Ci. In phase-

2, for each t ∈ [ℓ], and a non-negative integer p, we find a 2-coloring of Ĝt =
G[C1∪, . . . ,∪Ct∪X ] that maximizes the number of blue edges with the constraint
that number of red edges is at least p.

Phase-1. For each i ∈ [ℓ], q ∈ [|E(Gi)|]∪{0} and nr
i ∈ [|Ci|]∪{0}, let b[Gi, n

r
i , q]

be the maximum number of blue edges that can be attained in a 2-coloring g of
Gi satisfying the following constraints.

1. g|X = h.
2. number of red edges in Gi is at least q.
3. number of red vertices in Ci is equal to nr

i .

If the constraint cannot be satisfied, then we let b[Gi, n
r
i , q] = −∞. From the

definition of b[, ], we can see that b[Gi, 0, 0] gives the number of blue edges in Gi

when all vertices of Ci are colored blue. b[Gi, 0, q] = −∞ for q > 0, b[Gi, n
r
i , 0] =

−∞ for nr
i > 1. For a given values of i, nr

i and q, the computation of b[Gi, n
r
i , q]

is described as follows.
Let Hi be the graph obtained from Gi by deleting the edges inside the clique

Ci. It is easy to see that X is a vertex cover of the graph Hi. If g colors nr
i

vertices red in the clique Ci then we get
(
nr
i

2

)
red edges and

(
nb
i

2

)
blue edges

inside Ci, where nr
i + nb

i = |Ci|. Hence we get the following relation.

b
[
Gi, n

r
i , q

]
= b

[
Hi, n

r
i , q −

(
nr
i

2

)]
+

(
nb
i

2

)

8



For v ∈ Hi −X , let ri(v) and bi(v) denote the number of red and blue vertices
in N(v) ∩ X respectively. For a vertex v ∈ Hi, we use Hi − {v} to denote the
graph obtained from Hi by deleting the vertex v and its incident edges. Let
q′ = q −

(
nr
i

2

)
. Using this notation, we get the following recurrence.

b
[
Hi, n

r
i , q

′

]
= max

{
b
[
Hi−{v}, nr

i−1,max{q′−ri(v), 0}
]
, b
[
Hi−{v}, nr

i , q
′
]
+bi(v)

}

If v is colored red, then we get ri(v) red edges between v and the neighbors of
v in X . If v is colored blue, then we get bi(v) blue edges between v and neighbors
of v in X .

The size of the DP table is at most O(mn2) and each entry can be computed
in O(n) time. Hence the running time of Phase-1 is O(n3m).

Phase-2. Let Ĝt be the subgraph ofG induced by the cliques C1, · · · , Ct and the
set X . Let OPT [t, p] be the maximum number of blue edges that can be attained

in a 2-coloring f of Ĝt with the constraint that number of red edges is at least p
and f |X = h. If the constraint cannot be satisfied, then we let OPT [t, p] = −∞.
From the definition of OPT , we have OPT [0, 0] = 0 and OPT [0, p] = −∞ for
p > 0. For t > 0 we have:

OPT [t, p] = max
q = 0, . . . , |E(Gt)|
nr
t = 0, . . . , |Ct|

{
OPT

[
t− 1,max{p− q, 0}

]
+ b[Gt, n

r
t , q]

}

If there are q red edges in Gt and nr
t red vertices in Ct in the coloring f , then

we get b[Gt, n
r
t , q] blue edges in Gt. We consider all possible values for q and nr

t

and pick the values that maximizes the OPT .
Observe that (G,X, k1, k2) is a Yes instance if and only if OPT [ℓ, k1] ≥ k2.

There are O(ℓk1) subproblems, each of which can be solved in O(n2m) time.
As ℓ ≤ n, k1 ≤ m, the running time of phase-2 is O(ℓk1n

2m) = O(n3m2). The
overall running time of the algorithm is O(2kn3m2), where O(2k) is the time
required for guessing the coloring of X in an optimal coloring of G.

4.2 Distance to Co-cluster Graphs

Theorem 4. 2-Load Coloring is fixed-parameter tractable parameterized by

the distance to co-cluster graphs.

Proof. Let (G,X, k1, k2) be a 2-Load Coloring instance, where X ⊆ V (G)
of size k such that G −X is a co-cluster graph. The graph G −X is either an
independent set or a connected graph. If G −X is an independent set then X
is a vertex cover of G, hence we apply the algorithm of [9] to solve this instance
in FPT time.

Hence, we assume that G−X is connected. As G−X is a complement of a
cluster graph we can partition the co-cluster G −X into maximal independent

9



sets I1, I2, . . . , Iℓ. Note that for any i, j ∈ [ℓ] and i 6= j, every vertex of Ii is
adjacent to every vertex of Ij . We guess the colors of vertices in X in an optimal
2-coloring of G. This can be done in O(2k) time. Let h : X → {r, b} be such a
coloring. We assume that X is an independent set in G, otherwise we count the
number of red and blue edges inside X and adjust the parameters k1, k2 and
delete all the edges inside X .

For each i ∈ [ℓ], let Gi = G[X ∪ Ii] be the subgraph of G induced by the
vertices of the independent set Ii and the set X .

The algorithm is similar to the algorithm of distance to cluster described
in Theorem 3. It is based on dynamic programming technique, which has two
phases. In phase-1, given a graph Gi and non-negative integers q and nr

i , we find
a 2-coloring of Gi that maximizes the number of blue edges with the constriant
that there are at least q red edges in Gi and nr

i red vertices in Ii. In phase-

2, for each t ∈ [ℓ], and a non-negative integer p, we find a 2-coloring of Ĝt =
G[I1∪, . . . ,∪It∪X ] that maximizes the number of blue edges with the constraint
that number of red edges is at least p.

Phase-1. We can observe that X is a vertex cover of Gi of size k. For each
i ∈ [ℓ], q ∈ [|E(Gi)|] ∪ {0} and nr

i ∈ [|Ii|] ∪ {0}, let b[Gi, n
r
i , q] be the maximum

number of blue edges that can be attained in a 2-coloring g of Gi satisfying the
following constraints.

1. g|X = h.
2. number of red edges in Gi is at least q.
3. number of red vertices in Ii is equal to nr

i .

If the constraint cannot be satisfied, then we let b[Gi, n
r
i , q] = −∞. From the

definition of b[, ], we can see that b[Gi, 0, 0] gives the number of blue edges in Gi

when all vertices of Ii are colored blue. b[Gi, 0, q] = −∞ for q > 0, b[Gi, n
r
i , 0] =

−∞ for nr
i > 1. For v ∈ Gi −X , let ri(v) and bi(v) denote the number of red

and blue vertices in N(v)∩X respectively. For a given values of i, nr
i and q, the

computation of b[Gi, n
r
i , q] is described as follows.

b
[
Gi, n

r
i , q

]
= max

{
b
[
Gi−{v}, nr

i−1,max{q−ri(v), 0}
]
, b
[
Gi−{v}, nr

i , q
]
+bi(v)

}

If v is colored red, then we get ri(v) red edges between v and the neighbors of
v in X . If v is colored blue, then we get bi(v) blue edges between v and neighbors
of v in X .

The size of the DP table is at most O(mn2) and each entry can be computed
in O(n) time. Hence the running time of Phase-1 is O(n3m).

Phase-2. Let Ĝt be the subgraph ofG induced by the independent sets I1, · · · , It
and the set X . Let OPT [t, N r

t , p] be the maximum number of blue edges that

can be attained in a 2-coloring f of Ĝt satisfying the following constrains.

1. f |X = h.

10



2. number of red edges in Ĝt is at least p.
3. number of red vertices in Ĝt −X is N r

t .

If the constraint cannot be satisfied, then we let OPT [t, N r
t , p] = −∞. From the

definition of OPT , we have OPT [0, 0, 0] = 0 and OPT [0, N t
r, p] = −∞ for p > 0,

OPT [t, 0, p] = −∞ for p > 0, For t > 0 we have:

OPT [t, N r
t , p] = max

q = 0, . . . , |E(Gt)|
nr
t = 0, . . . , |It|

{
OPT

[
t− 1, N r

t − nr
t ,max{p− q − nr

t (N
r
t − nr

t ), 0}
]

+ b[Gt, n
r
t , q] + (N b

t − |V (Gt)|+ nr
t )(|V (Gt)| − nr

t )

}

Where N b
t = |V (Ĝt)|−N r

t . If there are q red edges in Gt and nr
t red vertices

in It in the coloring f , then we get b[Gt, n
r
t , q] blue edges in Gt. Also, we get

nr
t (N

r
t −nr

t ) red edges and (N t
b −|V (Gt)|+nr

t )(|V (Gt)|−nr
t ) blue edges between

the sets It and I1∪, . . . , It−1 respectively. We consider all possible values for
number of red edges in Gt and red vertices in It and pick the one that maximizes
the OPT .

Observe that (G,X, k1, k2) is a Yes instance if and only if OPT [ℓ,N r
ℓ , k1] ≥

k2 for some non-negative integer N r
ℓ . There are O(ℓnk1) subproblems, each of

which can be solved in O(n2m) time. As ℓ ≤ n, k1 ≤ m, the overall running time
of this algorithm is O(2kℓk1n

3m) = O(2kn4m2).

4.3 Distance to Threshold Graphs

Theorem 5. 2-Load Coloring is fixed-parameter tractable parameterized by

the distance to threshold graphs.

Proof. Let (G,X, k1, k2) be a 2-Load Coloring instance, where X ⊆ V (G) of
size k such that G −X is a threshold graph. We guess the coloring of X in an
optimal 2-coloring of G in O(2k) time. Let h : X → {r, b} be such a coloring.
We assume that X is an independent set in G, if not we count the number of
red edges er and blue edges eb inside X and replace the parameters k1 and k2
with k1 − er and k2 − eb respectively. Then finally we delete all the edges inside
X . For a vertex v in G −X , we use nr

X(v) (resp. nb
X(v)) to denote the number

of neighbors of the vertex v in the set X which are colored red (resp. blue).
Let v1, v2, . . . , vℓ be the ordering of the vertices of the threshold graph G − X
obtained from its construction (i.e., vi is added before vi+1 to the graph G−X).

For t ∈ [ℓ], let Vt = {v1, . . . , vt} and Gt be the graph induced by the vertices
Vt∪X . Using the definition of threshold graphs, we can see that, for each t ∈ [ℓ],
the vertex vt is either a universal vertex or an isolated vertex in the graphGt−X .
We use nr

t and nb
t denote the number of red and blue vertices in a 2-coloring of

Gt respectively.

11



Let OPT [t, nr
t , p] be the maximum number of blue edges that can be obtained

in a 2-coloring g of Gt with the constraint that g|X = h and Vt has n
r
t vertices of

color red,Gt has at least p red edges. If the constraint cannot be satisfied, then we
let OPT [t, nr

t , p] = −∞. From the definition of OPT , we have OPT [0, 0, 0] = 0,
OPT [0, nr

t , p] = −∞ for p > 0 and OPT [t, 0, p] = −∞ for p > 0.
For t > 0, we have two cases based on whether vt is a universal vertex or an

isolated vertex in the graph Gt−X . If vt is a universal vertex, then it is adjacent
to all vertices of Gt −X . Hence we get the following relation.

OPT [t, nr
t , p] =

max
{
OPT [t−1, nr

t−1,max{p−(nr
t−1)−nr

X(vt), 0}], OPT [t−1, nr
t , p]+(nb

t−1+nb
X(vt))}

If vt is colored red, then we get (nr
t − 1) red edges between vt and neighbors

of vt in Gt −X and nr
X(vt) red edges between vt and its neighbors in X . If vt

is colored blue, then we get nb
t − 1 blue edges between vt and neighbors of vt in

Gt −X and nb
X(vt) blue edges between vt and its neighbors in X .

If vt is an isolated vertex, then it is not adjacent to any vertex of Gt − X .
Then we get the following relation.

OPT [t, nr
t , p] = max

{
OPT [t−1, nr

t−1,max{p−nr
X(vt), 0}], OPT [t−1, nr

t , p]+nb
X(vt)}

If vt is colored red, then we get nr
X(vt) red edges between vt and its neighbors

in X . If vt is colored blue, then we get nb
X(vt) blue edges between vt and its

neighbors in X .
Observe that (G,X, k1, k2) is a Yes instance of 2-Load Coloring if and

only if OPT [ℓ, nr
t , k1] ≥ k2 for some integer nr

t . There are O(n2k1) subproblems,
each of which can be solved in O(n) time. As k1 ≤ m, the overall running time
of this algorithm is O(2kn3m).

5 Special Graph Classes

In this section, we show that 2-Load Coloring is NP-complete on bipartite
graphs and split graphs.

Theorem 6. 2-Load coloring is NP-complete on bipartite graphs.

Proof. We give a reduction from 2-Load Coloring on general graphs. Let
(G, k1, k2) be an instance of 2-Load Coloring. Without loss of generality, we
assume that k2 ≥ k1. We construct a bipartite graph H = ((X ∪ Z) ∪ Y ), E)
as follows. For every vertex v ∈ V (G), we introduce a vertex xv ∈ X . For every
edge e ∈ E(G), we introduce a vertex ye ∈ Y , and if e = uv, then ye is adjacent
to xu and xv in H . For every edge e ∈ E(G), we also introduce additional m2

vertices z1e , z
2
e , . . . , z

m2

e in Z. For each e ∈ E(G) and i ∈ [m2] introduce an edge
between zie and ye in H . This completes the construction of the bipartite graph
H and clearly can be performed in polynomial time. We set k′1 = 2k1 + k1m

2,
k′2 = (m + k2 − k1) + (m − k1)m

2. We argue that (G, k1, k2) is a yes instance

12



of 2-Load Coloring if and only if (H, k′1, k
′

2) is a yes instance of 2-Load
Coloring.

Forward direction. Let f : V (G) → {r, b} is a 2-coloring of G such that
rf = k1 and bf = k2. Then we define a coloring g : V (H) → {r, b} of H
as follows: g(xv) = f(v) for all xv ∈ X . For every edge e = uv ∈ E(G), if
f(u) = f(v) = r, then g(ye) = f(u), else g(ye) = b. For each e ∈ E(G) and
i ∈ [m2], g(zie) = g(ye). Note that for each red (resp blue) edge e = uv in
G, m2 + 2 edges (namely yexv, yexu, z

i
exu) are red (resp. blue) with respect

to g. For each edge e = uv ∈ E(G) with f(u) 6= f(v) we get m2 + 1 blue
edges with respect to g. Therefore, rg = (m2 + 2)k1 = 2k1 + m2k1 and bg =
(m2 + 2)k2 + (m − k1 − k2)(m

2 + 1) = (m + k2 − k1) + (m − k1)m
2. Hence

(H, k′1, k
′

2) is a yes instance of 2-Load Coloring.
Reverse direction. Let g : V (H) → {r, b} be a 2-coloring of H such that

rg = 2k1 + k1m
2 and bg = (m + k2 − k1) + (m − k1)m

2. We assume that
g(zie) = g(ye) for each e ∈ E(G) and i ∈ [m2], otherwise we recolor the vertices
zie with the color of ye, as it only increases the number of red and blue edges.
Now, we argue that the 2-coloring g of H when restricted to the vertices of G
gives a 2-coloring f of G such that rf = k1 and bf = k2.

We partition the vertices of Y in H into four sets based on their coloring in
g as follows.

Pr = {ye : e = uv, g(ye) = g(xu) = g(xv) = r}

Qr = {ye : e = uv, g(ye) = r and g(xu) 6= g(xv)}

Pb = {ye : e = uv, g(ye) = g(xu) = g(xv) = b}

Qb = {ye : e = uv, g(ye) = b and g(xu) 6= g(xv)}

Let pr, qr,pb and qb denote the sizes of the sets Pr, Qr Pb and Qb respectively.
Using this notation, we have rg = 2pr+qr+m2(pr+qr), bg = 2pb+qb+m2(pb+qb).
Also, it is easy to see that pr + qr + pb + qb = m. By using above two equations,
we get

rg + bg = pr + pb +m+m3

pr+pb = rg+bg−m−m3 = 2k1+k1m
2+(m+k2−k1)+(m−k1)m

2−m−m3 = k1+k2

Claim. pr = k1 and pb = k2.
Suppose pr = k1 − ℓ and pb = k2 + ℓ for some ℓ ≥ 1. Then

rg = 2pr + qr +m2(pr + qr) = 2(k1 − ℓ) + qr +m2(k1 − ℓ+ qr)

Since rg = 2k1 + k1m
2, by substituting in the above equation, we get qr =(

m2+2
m2+1

)
ℓ ≥ ℓ + 1. That implies qb ≤ m − (k1 − ℓ) − (k2 + ℓ) − (ℓ + 1) =

(m− k1 − k2 − ℓ− 1). Then

bg = 2pb + qb +m2(pb + qb)

=2(k2 + ℓ) + (m− k1 − k2 − ℓ− 1) +m2(k2 + ℓ+ (m− k1 − k2 − ℓ− 1))

<(m+ k2 − k1) +m2(m− k1)

13



This is a contradiction as bg = (m+k2−k1)+m2(m−k1). Therefore pr = k1
and pb = k2. Define f : V (G) → {r, b} as f(u) = g(xu). Since pr = k1 and
pb = k2, we get rf ≥ k1 and bf ≥ k2. Hence, by restricting the coloring g of H
to the vertices of G, we get a coloring f of G with at least k1 red edges and k2
blues edges. Therefore (G, k1, k2) is a yes instance of 2-Load Coloring.

Theorem 7. 2-Load coloring is NP-complete on split graphs.

Proof. The proof is similar to the case of bipartite graphs except that we add
all possible edges between the vertices of Y to make it a clique in the graph H .
We set k′1 = 2k1 +m2k1 +

(
k1

2

)
and k′2 = (m+ k2 − k1) + (m− k1)m

2 +
(
m−k1

2

)
.

6 Conclusion

In this paper, we have studied the parameterized complexity of 2-Load Color-

ing. We showed that 2-Load Coloring (a) cannot be solved in time f(w)no(w),
unless ETH fails, (b) can be solved in time nO(w), where w is the clique-width
of the graph. We have shown that the problem is FPT parameterized by (a)
distance to cluster graphs (b) distance to co-cluster graphs and (c) distance
to threshold graphs. We also studied the complexity of the problem on special
classes of graphs. We have shown that the problem is NP-complete on bipartite
graphs and split graphs. We conclude with the following open questions.

• As the problem admits a linear kernel with respect to the solution size, it
is natural to study the kernelization complexity of the problem with respect
to structural graph parameters.

• Finally, we do not know if 2-Load Coloring can be solved in polynomial
time on interval graphs or permutation graphs.

References

1. Ahuja, N., Baltz, A., Doerr, B., Př́ıvětivỳ, A., Srivastav, A.: On the minimum load
coloring problem. Journal of Discrete Algorithms 5(3), 533–545 (2007)

2. Barbero, F., Gutin, G., Jones, M., Sheng, B.: Parameterized and approximation
algorithms for the load coloring problem. Algorithmica 79(1), 211–229 (2017)

3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters 58(4), 171–176 (1996)

4. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101(1), 77–114 (2000)

5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)

6. Diestel, R.: Graph theory. 2005. Grad. Texts in Math (2005)
7. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower

bounds for problems parameterized by clique-width. In: Proceedings of the twenty-
first annual ACM-SIAM symposium on Discrete Algorithms. pp. 493–502. SIAM
(2010)

14



8. Guo, J.: A more effective linear kernelization for cluster editing. Theoretical Com-
puter Science 410(8-10), 718–726 (2009)

9. Gutin, G., Jones, M.: Parameterized algorithms for load coloring problem. Infor-
mation Processing Letters 114(8), 446–449 (2014)

10. Mahadev, N.V., Peled, U.N.: Threshold graphs and related topics, vol. 56. Elsevier
(1995)

15


