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Abstract. Since the last decades, deep neural models have been push-
ing forward the frontiers of artificial intelligence. Applications that in
the recent past were considered no more than utopian dreams, now ap-
pear to be feasible. The best example is autonomous driving. Despite
the growing research aimed at implementing autonomous driving, no ar-
tificial intelligence can claim to have reached or closely approached the
driving performance of humans, yet. While the early forms of artificial
neural networks were aimed at simulating and understanding human
cognition, contemporary deep neural networks are totally indifferent to
cognitive studies, they are designed with pure engineering goals in mind.
Several scholars, we included, argue that it urges to reconnect artificial
modeling with an updated knowledge of how complex tasks are realized
by the human mind and brain. In this paper, we will first try to distill
concepts within neuroscience and cognitive science relevant for the driv-
ing behavior. Then, we will identify possible algorithmic counterparts
of such concepts, and finally build an artificial neural model exploiting
these components for the visual perception task of an autonomous ve-
hicle. More specifically, we will point to four neurocognitive theories:
the simulation theory of cognition; the Convergence-divergence Zones
hypothesis; the transformational abstraction hypothesis; the free-energy
predictive theory. Our proposed model tries to combine a number of
existing algorithms that most closely resonate with the assumptions of
these four neurocognitive theories.

Keywords: deep learning - autonomous driving - convergence—divergence
zones - variational autoencoder - free energy

1 INTRODUCTION

Artificial neural networks are responsible for the current fast resurgence of Ar-
tificial Intelligence, after several decades of slow and unsatisfactory advances,
and are now at the very heart of many technology developments [547I23]. They
have proved to be the best available approach for a variety of different problem
domains [40J31], and the design of autonomous vehicles is definitely one of the
research areas to have amply benefited from this technology [2/39/55].
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Actually, this success was totally unexpected because the technology devel-
opment has been very little, with only relative minor improvements from a field
that was stagnating at the beginning of the century. Artificial neural network
found their way during the '80s, with the Parallel Distributed Processing (PDP)
project [53]. The success of PDP was largely due to an efficient learning rule,
known as backpropagation, which adapts the connections between units through
input/output samples of the desired function. Geoffrey Hinton was one of the
protagonists of the PDP project [26], who contributed specifically to the intro-
duction of the backpropagation [52]. However, after a couple of decades, artificial
neural networks exhausted their potential. Once again, Hinton gave them a new
boost [27], by refining the old backpropagation method. With just relatively
small advances in the learning algorithm, he made possible to train networks
with more layers of neurons than before, called deep learning models ever since.

The most distinctive difference between the PDP generation of neural net-
works and current deep learning is in their scope. For the PDP project the scope
was clearly indicated in the title of its main book [53]: “Explorations in the Mi-
crostructure of Cognition”. On the contrary, the majority of modelers in deep
learning is totally indifferent to cognition, and their scope is purely on engi-
neering goals. In a first phase, adopting mathematical solutions alien to mental
processes has been certainly a key of the success of deep learning. However,
several scholar are now arguing that the segregation between the deep learning
and the neurocognitive communities would be dangerous and detrimental for a
further progress [41I22160].

We agree to this position, and we deem that looking at neurocognitive facts
would be especially valuable in applications such as driving. The reason is that
driving is the sort of behavior for which neurocognition has changed its paradigm
since the PDP era. Cognitive science of the '80s was dominated by the modular
perspective [IT], which divided sharply intellectual tasks such as language and
categorization, from low level tasks such as vision and motor control. Since the
beginning of this century cognitive science has witnessed a radical methodolog-
ical revolution, often summarized as “4E cognition” [44]: embodied, embedded,
enactive, and extended. One of the assumptions of 4E cognition that is most
relevant to our case is that perception and action are constitutively intertwined,
and not only they are contiguous to intellectual behavior, sensorimotor simula-
tions are the basic founding of cognition as a whole. This structure of cognition
is the source of the amazing human abilities of learning new forms of sensori-
motor control, like driving. We believe this is a reason why none of the current
available implementations of autonomous vehicles can claim to be nowhere close
to the driving performance of a human being.

Such considerations lead us to reflect if it is possible to take inspiration
from the mechanisms whereby the brain learns to perform such complex sen-
sorimotor behaviors. With this paper, we propose to exploit the current most
established neurocognitive theories as inspiration for designing more brain-like
neural network models. In the next section we will review a number of selected
neurocognitive theories relevant to our purposes. In section §3] we will show that
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it is possible to find neural algorithms that best approximate the assumptions
of such theories, and we will describe how our model put together all these algo-
rithms. Finally, in section §4] we will present the results of applying our neural
model to a simulated driving environment.

This paper results from one of the research projects carried out as part of
the European project |Dreams4Cars, where we are developing an artificial driving
agent inspired by the neurocognition of human driving, for further details refer
to [47/46].

2 THE NEUROCOGNITIVE POINT OF VIEW

Humans are able to learn an impressive range of different and very complex
sensorimotor controls schemes — from playing tennis to salsa dancing. The re-
markable aspect is that no motor skill is innate to humans, not even the most
basic ones, like walking or grasping objects [19]. All motor controls are, in fact,
learned through lifetime. The process of human sensorimotor learning involves
sophisticated computational mechanisms, like gathering of task-relevant sensory
information, selection of strategies, and predictive control [64].

The ability to drive is just one of the many highly specialized human sensori-
motor behaviors. The brain learns to solve the driving task with the same kind of
strategy adopted for every sort of motor planning that requires continuous and
complex perceptual feedback. We deem that the sophisticated control system
the human brain develops when learning to drive by commanding the ordinary
car interfaces — steering wheel and pedals — may reveal precious insights on how
to implement a robust autonomous driving system.

It should be noted that the human sensorimotor learning is still far from
being fully understood, as there are several competing theories about which
components of the brain are engaged during learning. However, a huge body
of research in neuroscience and cognitive science has been produced in the past
decades, which allows us to grasp some useful principles for designing an artificial
driving agent capable of learning the sensorimotor controls necessary to drive.

2.1 The Simulation Theory

A well-established theory is the one proposed by Jeannerod and Hesslow, the
so-called simulation theory of cognition, which proposes that thinking is essen-
tially simulated interaction with the environment [30J24]. In the view of Hess-
low, simulation is a general principle of cognition, explicated in at least three
different components: perception, actions and anticipation. Perception can be
simulated by internal activation of sensory cortex in a way that resembles its
normal activation during perception of external stimuli. Simulation of actions
can be performed when activating motor structures, as during a normal behav-
ior, but suppressing its actual execution. Moreover, Hesslow argues that actions
can trigger perceptual simulation of their most probable consequences.
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Fig. 1. Schematic representation of Damasio’s CDZ framework [42, Fig. 1]. Neuron
ensembles in early sensorimotor cortices of different modalities send converging forward
projections (red arrows) to higher-order association cortices, which, in turn, project
back divergently (black arrows) to the early cortical sites, via several intermediate
steps.

The most simple case of simulation is mental imagery, especially in visual
modality. This is the case, for example, when a person tries to picture an object or
a situation. During this phenomenon, the primary visual cortex (V1) is activated
with a simplified representation of the object of interest, but the visual stimulus
is not actually perceived [35/43].

2.2 Convergence-divergence Zones

Any neural theory claiming to explain the simulation process is required in the
first place to simultaneously:

1. identify the neural mechanisms able to extract information relevant to the
action, from a large amount of sensory data;
2. recall related concepts from memory during imagery.

A prominent proposal in this direction is the formulation of the convergence-
divergence zones (CDZs) [42]. They derive from an earlier model [8] which high-
lighted the “convergent” aspect of certain neuron ensembles, located downstream
from primary sensory and motor cortices. Such convergent structure consists in
the projection of neural signals on multiple cortical regions in a many-to-one
fashion. The primary purpose of convergence is to record, by means of synap-
tic plasticity, which patterns of features — coded as knowledge fragments in the
early cortices — occur in relation with a specific concept. Such records are built
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through experience, by interacting with objects. On the other hand, a require-
ment for convergence zones (already found in the first proposal of Damasio) is
the ability to reciprocate feedforward projections with feedback projections in a
one-to-many fashion. This feature is now made explicit in the CDZ formulation.

The convergent flow is dominant during perceptual recognition, while the
divergent flow dominates imagery. Damasio postulates that switching between
one of the two modes may depend on time-locking. If activation in a CDZ is
synchronous with activity in separate feeding cortical sites, than perceptual
recognition takes place. Conversely, imagery is driven by synchronization with
backprojecting cortical areas.

Convergent-divergent connectivity patterns can be identified for specific sen-
sory modalities, but also in higher order association cortices, as shown in the
hierarchical structure in Fig. [I] It should be stressed that CDZs are rather dif-
ferent from a conventional processing hierarchy, where processed patterns are
transferred from earlier to higher cortical areas. In CDZs, part of the knowl-
edge about perceptual objects is retained in the synaptic connections of the
convergent-divergent ensemble. This allows to reinstate an approximation of the
original multi-site pattern of a recalled object or scene.

2.3 Transformational Abstraction

One of the major challenge in cognitive science is explaining the mental mech-
anisms by which we build conceptual abstractions. The conceptual space is the
mental scaffolding the brain gradually learns through experience, as internal rep-
resentation of the world [56]. As highlighted by [45] CDZs are a valid systemic
candidate for how the formation of concepts takes place at brain level. However,
the idea of CDZ is just sketched and cannot provide a detailed mechanism for
conceptual abstractions.

According to the historical empiricist tradition, conceptual abstractions is de-
rived from experience, mostly perceptual experience. This direction fits perfectly
with the approach implemented by artificial neural networks. Still, a difficulty
with acquiring even moderately abstract categories lies in the mutually incon-
sistent manifestations of the characteristic features of a category, in each of its
real exemplars. In visual data, for example, object translation, rotation, motion
in depth, deformation and lighting changes can drastically entangle features of
objects belonging to the same category. Conversely, the perceptual appearance
of two unrelated objects, like a close flying insect and a far distant vulture, can
be very similar. A suggested solution to this difficult issue is in the transforma-
tional abstraction [22I5] performed by a hierarchy of cortical operations, as in
the ventral visual cortex [49]. The essence of transformational abstraction, from
a mathematical point of view, should lie in the combination of two operations:
linear convolutional filtering and nonlinear downsampling. Operations of this
sort have been identified in the primary visual cortex [2829]17], and the staking
of this process in hierarchy is well recognized in the primate ventral visual path
[TO/T2/61].
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Note that transformational abstraction is one of the possible interpretation
of the convergent zone in the CDZ theory, even if it lacks a specification of the
divergent counterpart, which can lead from the abstraction of a concept to its
use during mental imagination. Transformational abstraction is conceived as a
general road to conceptual abstractions, nevertheless, it is highly relevant in the
case of driving. As will be discussed in during the drive, the sensorimotor
control relies heavily on a small number of known concepts, abstracted from
visual space.

2.4 The Predictive Theory

The reason why cognition is mainly explicated as simulation, according to Hess-
low or Jeannerod, is because the brain through simulation can achieve the most
precious information of an organism: a prediction of the state of affairs in the
environment in the future. The need of predicting, and how it mold the en-
tire cognition, has become the core of a different, but related, theory which has
gained large attention in the last decade, made popular under the term “Bayesian
brain”, “predictive brain”, or “free-energy principle for the brain”. The leading
figure of this theory is Karl Friston [I3/14]. According to Friston the behavior of
the brain — and of an organism as a whole — can be conceived as minimization of
free-energy, a quantity that can be expressed in several ways depending on the
kind of behavior and the brain systems involved.

Free-energy is a concept originated in thermodynamics, as a measure of the
amount of work that can be extracted from a system. What is borrowed by Fris-
ton is not the thermodynamic meaning of the free-energy, but its mathematical
form only. This mathematical form is derived from the framework of variational
Bayesian methods in statistical physics, where the intractable problem of in-
ferring the posterior distribution over a random variable is approximated by a
different, and more tractable, auxiliary distribution [63]. We will see in how
the same probabilistic framework will be used in the derivation of a deep neural
model. The basic form of the free-energy under the variational Bayesian frame-
work is borrowed by Friston for abstract entities of cognitive value. For example,
this is his free-energy formulation in the case of perception [I5] p.427]:

Fp = A, (5(cl2)p(cle, a) ) ~ log p(e|a) (1)

where x is the sensorial input of the organism, c is the collection of the envi-
ronmental causes producing x, a are actions that act on the environment to
change sensory samples, and z are inner representations of the brain. The quan-
tity p(c|z) is the encoding in the brain of the estimate of causes of sensorial
stimuli. The quantity p(c|x, a) is the conditional probability of sensorial input
conditioned by the actual environmental causes ¢. The discrepancy between the
estimated probability and the actual probability is given by the Kullback-Leibler
divergence Akry,. The minimization of Fp in equation optimizes z. In the case
of action the free energy formulation by Friston becomes [15, p.428]:
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Fa = A (p(O)llp(e)) — logp(ale. a) 2

and optimizes a.
All formalization in equations and are just abstract, without details on
how the variables can be explicitate, and how the equations can be solved.

3 ARTIFICIAL MENTAL IMAGERY

Over the years the CDZ hypothesis has found support of a large body of neu-
rocognitive and neurophysiological evidence. However, it is a purely descriptive
model and does not address the crucial issue of how the same neural assembly,
which builds connections by experiences in the convergent direction, can compu-
tationally work in the divergent direction as well. At the moment, there are no
computational models that faithfully replicate the behavior of CDZs, however,
we found a number of independent notions, introduced in the field of artificial
intelligence for different purposes, which bear significant similarities with the
CDZ scheme. Here we will first introduce these notions independently, then we
will describe our model which, by taking together these pieces, builds up a neural
architecture inspired by CDZs.

3.1 Convergence—divergence in the Autoencoder

In the realm of artificial neural networks, the computational idea that most
closely resonate with CDZ is the autoencoder. It is an idea that has been around
for a long time [25], but more recently has been the cornerstone of the evolution
from shallow to deep neural architectures [2762]. The crucial issue of training
neural architectures with multiple internal layers was initially solved associating
each internal layer with a Restricted Boltzmann Machine [27], so that they can be
pre-trained individually in unsupervised manner. The adoption of autoencoders
overcame the training cost of Boltzmann Machines: each internal layer is trained
in unsupervised manner, as an ordinary fully connected layer. The key idea is
to use the same input tensor as target of the output, and therefore to train
the layer to optimize the reconstruction of the input [38]. In the first layer the
inputs are that of the entire neural model, and for all subsequent layers the
hidden units’ outputs of the previous layer are now used as input. The overall
result is a regularization of the entire model similar to the one obtained with
Boltzmann Machine [I], or even a better one [62].

Soon after, the refinement of algorithms for initialization [I8] and optimiza-
tion [33] of weights, made any type of unsupervised pre-training method su-
perfluous. However, autoencoders continue to play their basic role for capturing
compact information from high dimensional data, and their use within this scope
has been expanded. In this kind of models the task to be solved by the network
is to simulate as output the same data fed as input. The advantage is that while
learning to reconstruct the input information, the model develops a very compact
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internal representation of the input space. The basic structure of an autoencoder,
independently of the details of the various implementations, is composed of two
neural models:

f@:Z*)X (3)
go: X = Z (4)

The first one is the decoder, often called the generative model, which recon-
structs high dimensional data & € X taking as input low dimensional compact
representations z € Z. The model is fully fixed by the set of parameters ©.
The model in equation is called encoder and computes the compact repre-
sentations z € Z of a high dimensional input @ € X. This model is determined
by its set of parameters @. In the autoencoder’s architecture the parameters @
and @ are learned by minimizing the error between input samples x; and the
outputs f(g(x;)). There is a clear correspondence between the encoder and the
convergence zone in the CDZ neurocognitive concept, and similarity between the
decoder and the divergence zone.

3.2 Convergence—divergence as Convolution—deconvolution

Let us now dive into detail of how convergence can be achieved inside autoen-
coders. The most common way is stacking feed-forward layers with decreasing
number of units. There is, however, an interesting alternative closely related to
the transformational abstraction hypothesis described in the deep convo-
lutional neural networks (DCNNs). One again, this architecture was introduced
by Hinton [36], by adapting an old model of the PDP era, called Neocognitron
[16], into a deep architecture. The DCNN implements the hierarchy of convo-
lutional filtering alternated with nonlinear downsampling, and it is considered
the essence of transformational abstraction. The old Neocognitron of Fukushima
alternates layers of S-cell type units with C-cell type units, which naming are
evocative of the classification in simple and complex cells by Hubel and Wiesel
[28129]. The S-units act as convolution kernels, while the C-units downsample
the images resulting from the convolution, by spatial averaging. The crucial dif-
ference from conventional convolutions in image processing [51/4] is that now the
kernels are learned. The DCNNs of Hinton and co-workers are “deep” versions
of Neocognitron, using several layers of convolutions, each with a large number
of different kernels, typically tens of millions.

DCNNs do not only resonate with the theoretical proposal of transforma-
tional abstraction, there is a growing evidence of striking analogies between pat-
terns in DCNN models and patterns of voxels in the brain visual system. One
of the first attempt to relate results of deep learning with the visual system was
based on the idea of adding at a given level of an artificial network model a layer
predicting in the space of voxel response, and to train this level on sets of images
and corresponding fMRI responses [20]. Using this method, a DCNN model [0]
was compared with fMRI data [21]. Initially, subjects were presented with 1750
natural images and voxel responses in progressively downstream areas — from



Title Suppressed Due to Excessive Length 9

V1 up to LO (Lateral Occipital Complezx) — were recorded. The same images
were presented to the model, and the output of the convolutional layers were
trained — with a simple linear predictor — to predict voxel patterns. As a result,
DCNN model responses were predictive of the voxels in the visual cortex above
chance, with good prediction accuracy especially in the lower visual areas. This
first unexpected result was immediately followed by several other studies, using
variants of the same technique [32I9I58], finding reasonable agreement between
features computed by DCNN models and fMRI data.

DCNNs are therefore a highly biologically plausible implementation for the
convergence zone in CDZs, at least in the case of visual information. Convo-
lutional neural models do not include a divergence counterpart, typically the
outputs of the last convolutions are fed into ordinary feed forward layers to
produce a classification. This gap was filled with the deconvolutional neural net-
works [66l67]65], performing alternation of unpooling and linear filtering. Each
step of these two operations reconstruct a higher level of spatial dimension of
the data, up to the full high dimension of the original image. Note that the
nonlinear downsampling done in DCNNs is a non invertible operation, there-
fore it is not possible to reconstruct faithfully the upsized representations by
unpooling. Zeiler and co-workers circumvented the problem by saving additional
information during the poolings done in the convolution stages for exploitation
during unpooling, but this strategy is clearly non biological plausible. However,
the stacked combination of deconvolution and unpooling is the current neural
implementation more close to the idea of divergence zone of CDZs.

3.3 Variational Bayes and Autoencoders

In the last few years there has been renewed interest in the area of Bayesian
probabilistic inference in learning models of high dimensional data. The Bayesian
framework, variational inference in particular, has found a fertile ground in com-
bination with neural models. Two concurrent and unrelated developments [34/48)]
have made this theoretical advance possible, connecting autoencoders and vari-
ational inference. This new approach became quickly popular under the term
variational autoencoder, and a variety of neural models including such idea have
been proposed over the years, see [59] for a review.

We will show in a while that the adoption of variational inference lead to
a mathematical formulation impressively similar to the concept of free energy
in Friston. This close analogy went unnoticed by all the main developers of
variational autoencoder. It is not so surprising because mainstream deep learning
is driven by engineering goals without any interest in connections with cognition.
Within the philosophy of the Dreams4Car project, illustrated in the Introduction
{1 the strong connection between a well established cognitive theory and a
computational solution, greatly argues in favor of adopting such solution.

The variational inference framework takes up the issue of approximating the
probability distribution p(x) of a high dimensional random variable x € X,
such as the visual scene that hits the retina of a living agent, or the camera of
an artificial agent. A candidate in approximating the real unknown probability
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distribution is a neural network such as that in equation . The neural network
by itself is deterministic, but its output distribution can be easily computed as
follows:

po(z|z) =N (z|fo(z), o’ (5)

where N (z|p, o) is the Gaussian function in @, with mean p and standard
deviation o. Using equation it is now possible to express pg(x), which is the
desired approximation of p(x):

po (@) = / vo(@, 2)dz = / po (@] 2)p(2)dz (6)

It is immediate to recognize that the kind of neural network performing the
function fe(:) is exactly the decoder part in the autoencoder, corresponding
to the divergence zone in the CDZ neurocognitive concept. In the case when
X is the domain of images, fo(-) comprises a first layer that rearranges the
low-dimension variable « in a two dimensional geometry, followed by a stack of
deconvolutions, up to the final geometry of the x images.

In equation @ there is clearly no clue on what the distribution p(z) might
be, but the idea behind variational autoencoder is to introduce an auxiliary
distribution g from which to sample z, and it is made by an additional neural
network. Ideally this model should provide the posterior probability pe(z|x),
which is unknown. This second neural model is of the kind in equation , and
as done in equation 7 its probability distribution is:

qo(z|x) :N(z\g¢(w),a21) (7)

The model fg(-) functions as decoder, and gg(-) is the encoder part in the
autoencoder, projecting the high dimensional variable @ into the low dimensional
space Z. It continues to play the role of the convergence zone in the CDZ idea.
The measure of how well pg(x) approximates p(x) for a set of ; € D sampled
in a dataset D is given by the log-likelihood:

(o) =3 log / po(i|)p(2)dz (8)
x, €D

This equation cannot be solved because of the unknown p(z), and here comes
the help of the auxiliary probability gs(z|x). Each term of the summation in
equation can be rewritten as follows:

L(O|x) = log/p@(w,z)dz
= log/p—e(m’z)qq}(zm)dz

9 (2|@)

B po(x, z)
- IOg ]Ez~q<p(z|w) |:q¢(z|w):| (9)
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where in the last passage we used the expectation operator E[-]. Being the log
function concave, we can now apply Jensen’s inequality:

|e, o|z) — 108 Eergy(ole) | 22055 |

> Ez~q<p(z|m) [lng@(iE, Z)] - Ez~q¢(z|m) [1Og qu(z|£l,')] (10)

Since the derivation in is smaller or at least equal to £(O|x), it is called
the wvariational lower bound, or evidence lower bound (ELBO). Note that now
in (O, @|x) there is also the dependency from the parameters @ of the second
neural network defined in @

It is possible to rearrange further ¢(©,®|x) in order to have po(z|z) instead
of po(x, z) in equation , moreover, we can now introduce the loss function
L(O,®|x) as the value to be minimized in order to maximize ELBO:

L(O,P|x) = —L(O, D|x)

pe(, 2)
= /qg:. (z|x) log PP ———dz
/ z|x) logpie(w‘z)p@( )dz
9 (z|)
= AkL(22(2|2)llpo(2)) = Ezngy(zla) logpo(@lz)]  (11)

where the last step uses the Kullback-Leibler divergence Akr,. By comparing
equation with the formulation of the free-energy principle by Friston
their coincidence appears immediately.

The formulation in seems to be still intractable, because contains the
term pg(z), but there is a simple analytical formulation of the Kullback-Leibler
divergence in the Gaussian case (see appendix B in [34]):

Z

A ((=2)Ip(2)) = —5 30 (14 log (02) — 2 —0?)  (12)

i=1

where p; and o; are the i-th components of the mean and variance of z given
by qa(z|T).

3.4 A CDZ-like Model for Driving

We have reviewed several components that match quite closely the relevant neu-
rocognitive theories identified in The model we propose attempts to weave
together these components, finalized at visual perception in autonomous driving
agents. There is a range of different levels at which we can design such models.
Similarly to the hierarchical arrangement of CDZs in the brain, as described by
Meyer and Damasio (again, Fig, variational autoencoder models embedding
convolution and deconvolution operations can be placed at a level depending on
the relevant representational space.
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Fig. 2. The architecture of our model. The variational autoencoder has an encoder
compressing an RGB image to a compact high-feature representation. Then 3 decoders
map different part of the latent space back to separated output spaces: the decoder
on the center outputs into the same visual space of the input; the other two decoders
project into conceptual space, producing binary images containing, respectively, car
entities and lane marking entities.

In the context of Dreams4Cars, we considered as a fundamental level of
model design the processes that start from the raw image data and converge up
to a low-dimension representation of visual features. Consequently, the divergent
path outputs in the same format as the input image. At an intermediate level, the
convergent processing path leads to representations that are no more in terms
of visual features, rather in terms of concepts. As discussed in §2.3 our brain
naturally projects sensorial information, especially visual, into conceptual space,
where the local perceptual features are pruned, and neural activation code the
nature of entities present in the environment that produced the stimuli. In the
driving context it is not necessary to infer categories for every entity present in
the scene, it is useful to project in conceptual space only the objects relevant
to the driving task. In the model here presented we choose to consider the two
main concepts of cars and lane markings.
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As depicted in Fig. 2] the model is composed by one shared encoder and
three independent decoders:

foy 1 2= & (13)
f@c : 20 — Xo (14)
fo, + 21— AL (15)

9o X = Z (16)

where the subscript V denotes visual space, the subscripts C and L are for the

cars and lane markings concepts, respectively. For a vector in the latent space
it holds:

z€Z=|zc,%, 2L (17)
Z=RMW
Zg =RNe
Zp, =RM
N
Ng =N < TV (18)

In the first expression z(c c} are the two segments inside the latent vector z
representing the car and lane concepts, respectively. The segment in between,
z, encodes generic visual features, and the entire latent vector z represents in
visual space. The rationale for this choice is that in mental imagery there is no
clear cut distinction between low—level features and semantic features, the entire
scene is mentally reproduced, but including the awareness of the salient concepts
present in the scene. There is no reason for using different latent space size for
the concepts car and lane, as expressed in equation (|18), where the inequality
reflects the partitioning of z according to equation

Note that the idea of partitioning the entire latent vector into meaningful
components is not new. In the context of processing human heads the vector has
been forced to encode separate representations for viewpoints, lighting condi-
tions, shape variations [37]. In [68] the latent vector is partitioned in one segment
for the semantic content and a second segment for the position of the object. Our
approach is different. While we keep disjointed the two segments for the car and
lane concepts, we full overlap these two representations within the entire visual
space. This way, we adhere entirely to the CDZ principle, and try to achieve the
full scene by divergence, but at the same time including awareness for the car
and lane concepts.

By calling © = [Ov,O¢, O] the vector of all parameters in the three de-
coders, the loss functions of the model is derived from the basic equation .
At each iteration t a random batch B C D is presented, and the following loss is
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computed:
B
L(6,8(B) = (1—(1—ko)r') Y Axw(ga(2[2)[poy (2))
B
- Z AVEZ’\/(]:;&(Z‘Z) [logp@v (:B|Z)}
B

= AEzmtto(ga(zley) 08 Poc (®]20)]

B
- Z ALEZLNHL(qQS(ZliE)) [logﬁ@L (iL‘|ZL)] (19)

T

Few observations are due for the differences between this equation and the basic
loss equation . First of all, there is a delay in including the contribution of
the Kullback-Leibler divergence, because initially the encoder is unlikely to pro-
vide any meaningful probability distribution ¢g(z|x). There is a cost factor for
the Kullback-Leibler component, set initially at a small value kg and gradually
increased up to 1.0, with time constant x. This strategy was first introduced in
the context of variational autoencoders for language modeling [3].

All the components next to the Kullback-Leibler divergence are errors in the
recostruction of the imagined scene or the imagined concepts, and their relative
contributions are weighted by the parameters Afy,c 13- Their purpose is mainly
to normalize the range of the errors, which is quite different from visual to
conceptual spaces. For this reason, typically Ay # Ag = Ap-

The second component of the loss in equation computes the error in
visual space, using the entire latent vector z, and corresponds precisely to the
second component in the basic loss . The last two components compute
the error in the conceptual space, and are slightly different. Only the relevant
portion of the latent vector z is used, by the projection operators Il(c 1), where
the subscripts C and L are for the car and lane concepts, as usual. In addition,
a variant of the standard cross entropy is used, with the symbols ﬁ@{C,L}, in
order to account for the large unbalance between the number of pixel belonging
to a concept, and all the other pixels, typical of ordinary driving scenes. For each
concept, we precompute a coefficient to be applied to the true value class:

1
N M k

where N is the number of pixels in an image, M is the number of images in
the training dataset, and P is the ratio of true value pixels over all the pixels
in the dataset. The parameter k is used to smooth the effect of weighting by
the probability of ground truth, a value evaluated empirically as valid is 4. This

strategy has been first introduced in the context of medical image processing
[57].
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4 RESULTS

Fig. 3. Samples from the SYNTHIA dataset. All images show the same frame of a
driving sequence, but under different environmental and lighting conditions. The two
left columns show variations of sunny environments, while the two right columns depict
settings with low illumination and adverse weather conditions.

We present here a selection of results achieved with an instance of the model
described in the previous section. This architecture is described by the parame-
ters shown in Table[I] In our experiments for training and testing the presented
model, we adopted the SYNTHIA dataset [50], a large collection of synthetic im-
ages representing various urban scenarios. The dataset is realized using the game
engine Unity, and it is composed of ~ 100k frames of driving sequences recorded
from a simulated camera on the windshield of the ego car. We found this dataset
to be well suited for our experiment because, despite being generated in 3D com-
puter graphics, it offers a wide variety of illumination and weather conditions,
resulting occasionally in very adverse driving conditions. Each driving sequence
is replicated on a set of different environment conditions which includes seasons,
weather and time of the day. Fig. |3|gives an example of the variety of data com-
ing from the same frame of a driving sequence. Moreover the urban environment
is very diverse as well, ranging from driving on freeways, through tunnels, con-
gestion, “NewYork-like” city and “FKuropean” town — as they describe. Overall,
this dataset appears to be a nice challenge for our variational autoencoder.
Fig. [4] shows the results of our artificial CDZ model for a set of driving
sequences. The images produced by the model are processed to better show at
the same time the results on conceptual space and visual space. The colored
overlays highlight the concepts computed by the network, the cyan regions are
the output of the car divergent path, and the yellow overlays are the output of
the lane markers divergent path. These results nicely show how the projection
of the sensorial input (original frames) into conceptual representation is very
effective in identifying and preserving the sensible features of cars and lane
markings, despite the large variations in lighting and environmental conditions.
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City driving sequence Freeway driving sequence

Input frame Model output Input frame Model output

Fig. 4. Results of our model for two driving sequence of the SYNTHIA dataset: city
centre and freeway driving, each in sunny environments (top) and adverse conditions
(bottom). In the table, odd columns show the input frames, even columns show the
outputs of our neural network. In the output images, the background is the result of
the visual-space decoder, the output of the car conceptual-space decoder is highlighted
in cyan, in pink the output of the lane markings conceptual-space decoder.
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encoder convolution 7x7x16
convolution 7TXTx32
convolution 5 x5 x 32
convolution 5 x5 x 32
dense 2048
dense 512

latent 128 [16,96, 16]

decoders dense 2048
dense 4096
deconvolution 5 x5 x 32
deconvolution 5 X5 x 32
deconvolution 7x7x16
deconvolution TxT7x3

Table 1. Parameters of the architecture used to produce the final results. Note that
the size of the latent space is 128, of which 16 neurons represent the cars concept and
other 16 neurons represent the lane markings concept.

Table [2| display the IoU (Intersection over Unit) scores obtained by the net-
work over the SYNTHIA dataset. The table shows how the task of recognizing
the “car concept” generally ends up in better scores, with respect to the “lane
marking concept”. An explanation of why the latter task is more difficult can be
the very low ratio of pixel belonging to the class of lane markings, over the entire
image size. However, the performance of the model are satisfying, exhibiting the
best accuracy in the driving sequences on highways, and in the sunniest lighting
conditions (spring and summer sequences).

To demonstrate the generative capabilities of our model, we verified the result
of interpolating two latent space representations. The images on the left and
right of Fig. [p|are the two input images, while in the middle there are the images
generated from the interpolation of the compact latent spaces of the inputs. Even
in the case of very different input images, the interpolation generates novel and
plausible scenarios, proving the robustness of the learned latent representation.

Lastly, we would like to stress again that the purpose of our network is not
mere segmentation of visual input. The segmentation task is to be considered
as a support task, used to enforce the network to learn a more robust latent
space representation, which now is explicitly taking into consideration two of
the concepts that are fundamental to the driving tasks.

5 CONCLUSIONS

We presented a neural model for visual perception in the context of autonomous
driving, grounded in a number of concepts from neuroscience and cognitive sci-
ence. The main guiding principle is the CDZs proposed by Meyer and Damasio
that in our context represent the neural correlate of mental imagery as simula-
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all Highway 1 NewYork 1 FEuropean NewYork 2 Highway 2
Car 0.8566 0.9245 0.9084 0.9037 0.9123 0.9251
Lane 0.6627 0.8161 0.6900 0.7522 0.6709 0.7493
mloU 0.7597 0.8703 0.7992 0.8280 0.7916 0.8373

dawn  fall fog night  rain spring summer sunset winter
Car 0.8896 0.8852 0.8872 0.9009 0.9002 0.9201 0.9264 0.8978 0.9101
Lane 0.6399 0.7319 0.6509 0.6897 0.7096 0.7696 0.7532 0.7247 0.7502
mloU 0.7648 0.8086 0.7691 0.7953 0.8049 0.8449 0.8398 0.8113 0.8302

Table 2. IoU scores over the SYNTHIA dataset, grouped into the 5 different driving
sequences of the dataset (table on top) and into 9 different environmental and lighting
conditions (bottom). The results are given for the two “concepts” of cars and lane
markings, and their joint mean.

Fig. 5. Two examples of interpolation between latent space representations. For each
sequence, images on the top left and bottom right are the inputs, the other images are
obtained by interpolating the two latent spaces of the input images.
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tion, following Jeannerod and Hesslow. CDZs find their best artificial cousin in
the neural autoencoder architecture. For the choice of how to realize the conver-
gence zone in the encoder, the guiding cognitive theory is that of transforma-
tional abstraction, suggesting the adoption of convolutional networks. One more
theoretical contribution, the free-energy principle of Friston, further suggests to
refine the autoencoder architecture as variational autoencoder. Based on these
premises, our model aims at gaining an internal low—level representation of two
spaces: the visual one and the conceptual one. The latter is limited to the two
most crucial concepts during driving: cars and lane markings. We succeeded
in achieving an internal representation as compact as with 128 units only, of
which 16 units are enough to recognize the car concepts in any location of the
visual space, and similarly for the lane concept. Our future plans involve the
finalization of the higher level model of the architecture which computes motor
commands from the conceptual representation of the environment presented in
this work.
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