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Abstract. For a graph class C, the C-Edge-Deletion problem asks
for a given graph G to delete the minimum number of edges from G in
order to obtain a graph in C. We study the C-Edge-Deletion problem
for C the class of interval graphs and other related graph classes. It fol-
lows from Courcelle’s Theorem that these problems are fixed parameter
tractable when parameterized by treewidth. In this paper, we present
concrete FPT algorithms for these problems. By giving explicit algo-
rithms and analyzing these in detail, we obtain algorithms that are sig-
nificantly faster than the algorithms obtained by using Courcelle’s theo-
rem.

Keywords: Parameterized algorithms · Treewidth · Edge-Deletion ·
Interval graphs

1 Introduction

Intersection graphs are represented by geometric objects aligned in certain ways
so that each object corresponds to a vertex and two objects intersect if and only
if the corresponding vertices are adjacent. Intersection graphs are well-studied
in the area of graph algorithms since there are many important applications and
we can solve many NP-hard problems in general graphs in polynomial time on
such graph classes. Interval graphs are intersection graphs which are represented
by intervals on a line. Clique, Independent Set, and Coloring on interval
graphs can be solved in linear time and interval graphs have many applications
in bioinformatics, scheduling, and so on. See [3,14,26] for more details of interval
graphs and other intersection graphs.

Graph modification problems on a graph class C are to find a graph in C
by modifying a given graph in certain ways. C-Vertex-Deletion, C-Edge-
Deletion, and C-Completion are to find a graph in C by deleting ver-
tices, deleting edges, and adding edges, respectively, with the minimum cost.
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These problems can be seen as generalizations of many NP-hard problems.
Clique is equivalent to Complete-Vertex-Deletion: we find a complete
graph by deleting the smallest number of vertices. Modification problems on
intersection graph classes also have many applications. For example, Interval-
Vertex/Edge-Deletion problems have applications to DNA (physical) map-
ping [12,13,27]. Lewis and Yannakakis showed that C-Vertex-Deletion is
NP-complete for any nontrivial hereditary graph class [18]. A graph class C
is hereditary if for any graph in C, every induced subgraph of the graph is also
in C. Since the class of intersection graphs are hereditary, C-Vertex Dele-

tion is NP-complete for any nontrivial intersection graph class C. The problems
C-Edge-Deletion are also NP-hard when C is the class of perfect, chordal,
split, circular arc, chain [24], interval, proper interval [13], trivially perfect [25],
threshold [21], permutation, weakly chordal, or circle graphs [4]. See the lists
in [4,20].

Parameterized complexity is well-studied in the area of computer science.
A problem with a parameter k is fixed parameter tractable, FPT for short, if
there is an algorithm running in f(k)nc time where n is the size of input, f
is a computable function and c is a constant. Such an algorithm is called an
FPT algorithm. The treewidth tw(G) of a graph G represents treelikeness and
is one of the most important parameters in parameterized complexity concern-
ing graph algorithms. For many NP-hard problems in general, there are tons of
FPT algorithms with parameter tw(G) by dynamic programming on tree decom-
positions. Finding the treewidth of an input graph is NP-hard and it is known
that Chordal-Completion with minimizing the size of the smallest maximum
clique is equivalent to the problem. There is an FPT algorithm for computing
the treewidth of a graph by Bodlaender [2] which runs in O(f(tw(G))(n + m))
time where n and m are the numbers of vertices and edges of a given graph:
i.e., the running time is linear in the size of input. Courcelle showed that every
problem that can be expressed in monadic second order logic (MSO2) has a lin-
ear time algorithm on graphs of bounded treewidth [9]. Some intersection graph
classes, for example interval graphs, proper interval graphs, chordal graphs, and
permutation graphs, can be represented by MSO2 [8] and thus there are FPT
algorithms for Edge-Deletion problems on such graph classes. However, the
algorithms obtained by Courcelle’s theorem have a very large hidden constant
factor even when the treewidth is very small, since the running time is the expo-
nential tower of the coding size of the MSO2 expression.

Our Results: We propose concrete FPT algorithms for Edge-Deletion to
interval graphs and other related graph classes, when parameterized by the
treewidth of the input graph. Our algorithms virtually compute a set of edges S
with the minimum size such that G − S is in a graph class C by using dynamic
programming on a tree-decomposition. We maintain possible alignments of geo-
metric objects corresponding to vertices in the bag of each node of the tree-
decomposition. Alignments of the objects of forgotten vertices are remembered
only relatively to the objects of the current bag. If two forgotten objects have
the same relative position to the objects of the current bag, we remember only



144 T. Saitoh et al.

the fact that there is at least one forgotten object at that position. In this way,
we achieve the fixed-parameter-tractability, while guaranteeing that no object
pairs of non-adjacent vertices of the input graph will intersect in our dynamic
programming algorithm. Our algorithms run in O(f(tw(G))·(n+m)) time where
n and m are the numbers of vertices and edges of the input graph. Our explicit
algorithms are significantly faster than those obtained by using Courcelle’s the-
orem. We also analyze the time complexity of our algorithms parameterized by
pathwidth which is analogous to treewidth. The relation among the graph classes
for which this paper provides C-Edge-Deletion algorithms is shown in Fig. 1.

Circular Arc

Interval

Proper Interval Trivially Perfect

Threshold

Fig. 1. The graph classes of which this paper presents algorithms for the edge-deletion
problems.

Related Works: Another kind of common parameters considered in parame-
terized complexity of graph modification problems is the number of vertices or
edges to be removed or to be added. Here we review preceding studies on those
problems for intersection graphs with those parameters.

Concerning parameterized complexity of C-Vertex-Deletion, Hof et al.
proposed an FPT algorithm for Proper-Interval-Vertex-Deletion [16],
and Marx proposed an FPT algorithm for Chordal-Vertex-Deletion [22].
Heggernes et al. showed Perfect-Vertex-Deletion and Weakly-Chordal-

Vertex-Deletion are W[2]-hard [15]. Cai showed that C-Vertex/Edge-

Deletion are FPT when C is characterized by a finite set of forbidden induced
subgraphs [5].

For modification problems on interval graphs, Villanger et al. presented an
FPT algorithm for Interval-Completion [28], and Cao and Marx presented
an FPT algorithm for Interval-Vertex-Deletion [7]. Cao improved these
algorithms and developed an FPT algorithm for Edge-Deletion [6].

It is known that Threshold-Edge-Deletion, Chain-Edge-Deletion

and Trivially-Perfect-Edge-Deletion are FPT, since threshold graphs,
chain graphs and trivially perfect graphs are characterized by a finite set of for-
bidden induced subgraphs [5]. Nastos and Gao presented faster algorithms for
the problems [23], and Liu et al. improved their algorithms to O(2.57k(n + m))
and O(2.42k(n + m)) using modular decomposition trees [19], where k is the
number of deleted edges. There are algorithms to find a polynomial kernel for
Chain-Edge-Deletion and Trivially Perfect-Edge-Deletion [1,11].



FPT Algorithms for Edge-Deletion to Interval Graph Classes 145

Organization of this Article: Section 2 prepares the notation and defini-
tions used in this paper. We propose an FPT algorithm for Interval-Edge-

Deletion in Sect. 3. We then extend the algorithm related to the interval graphs
in Sect. 4. We conclude this paper and provide some open questions in Sect. 5.

2 Preliminaries

For a set X, its cardinality is denoted by |X|. A partition of X is a tuple
(X1, . . . , Xk) of subsets of X such that X = X1 ∪ · · · ∪ Xk and Xi ∩ Xj = ∅ if
1 ≤ i < j ≤ k, where we allow some of the subsets to be empty. For entities
x, y, z ∈ X, we let x[y/z] = y if x = z, and x[y/z] = x otherwise. For a subset
Y ⊆ X, define Y [y/z] = {x[y/z] | x ∈ Y }.

For a linear order π over a finite set X, by sucπ(x) we denote the successor
of x ∈ X w.r.t. π, i.e., x <π sucπ(x) and sucπ(x) ≤π y for all y with x <π y. The
maximum element of X w.r.t. π is denoted by maxπ X. Note that sucπ(maxπ X)
is undefined. Similarly predπ(x) is the predecessor of x and minπ X is the least
element of X.

A simple graph G = (V,E) is a pair of vertex and edge sets, where each
element of E is a subset of V consisting of exactly two elements.

A tree-decomposition of G = (V,E) is a tree T such that1

– to each node of T a subset of V is assigned,
– if the assigned sets of two nodes of T contain a vertex u ∈ V , then so does

every node on the path between the two nodes,
– for each {u, v} ∈ E, there is a node of T whose assigned set includes both u

and v.

The width of a tree-decomposition is the maximum cardinality of the assigned
sets minus one and the treewidth of a graph is the smallest width of its tree-
decompositions. A tree-decomposition is said to be nice if it is rooted, the root
is assigned the empty set, and its nodes are grouped into the following four:

– leaf nodes, which have no children and are assigned the empty set,
– introduce nodes, each of which has just one child, where the set assigned to

the parent has one more vertex than the child’s set,
– forget nodes, each of which has just one child, where the set assigned to the

parent has one less vertex than the child’s set,
– join nodes, each of which has just two children, where the same vertex set is

assigned to the parent and its two children.

It is known that every tree-decomposition has a nice tree-decomposition of
the same width whose size is O(k|V |), where k is the treewidth of the tree-
decomposition [10,17]. Hereafter, under a fixed graph G and a fixed nice tree-
decomposition T , we let Xs denote the subset of V assigned to a node s of a
tree-decomposition and X≤s denote the union of all the subsets assigned to the

1 We use the terms “vertices” for an input graph and “nodes” for a tree-decomposition.
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node s and its descendant nodes. We call vertices in Xs and in X≤s − Xs active
and forgotten, respectively. Moreover, we define Es = { {u, v} ∈ E | u, v ∈ Xs}
and E≤s = { {u, v} ∈ E | u, v ∈ X≤s}. Given a tree decomposition of treewidth
k, we can compute a nice tree-decomposition with treewidth k and O(kn) nodes
in O(k2(n + m)) time [10].

A tree-decomposition is called a path-decomposition if the tree is a path. The
pathwidth of a graph is the smallest width of its path-decompositions. Every
path-decomposition has a nice path-decomposition of the same pathwidth, which
consists of leaf, introduce, forget, but not join nodes.

The problem we tackle in this paper is given as follows.

Definition 1. For a graph class C, the C-Edge-Deletion is a problem to find
the minimum natural number c such that there is a subgraph G′ = (V,E′) of G
with G′ ∈ C and |E| − |E′| = c for an input simple graph G = (V,E).

In the succeeding sections, for different classes C of intersection graphs, we
present algorithms for C-Edge-Deletion that run in linear time in the input
graph size when the treewidth is bounded. We assume that the algorithm takes
a nice tree-decomposition T of G in addition as input [2,17]. Our algorithms are
dynamic programming algorithms that recursively compute solutions (and some
auxiliary information) for the subproblems on (X≤s, E≤s) for each node s in the
given tree-decomposition from leaves to the root.

(a)

lu1
ru1

lu2
ru2

lu3
ru3

lw1
rw1

lw2
rw2

lw3
rw3

(b)

u1 u2 u3

w1 w2 w3

Fig. 2. (a) Interval representation ρ. (b) Interval graph Gρ. We have A (ρ, s) =
(π, I, J, K, c) for Xs = {u1, u2, u3} and X≤s − Xs = {w1, w2, w3} where I =
{lu1 , ru1 , ru2 , lu3 , ru3}, J = {ru2 , lu3 , ru3}, and K = {ru2 , lu3}.

3 Finding a Largest Interval Subgraph

An interval representation π over a set X is a linear order over the set LRX =
LX ∪ RX ∪ {⊥,	} with LX = { lx | x ∈ X } and RX = { rx | x ∈ X } such that
⊥ <π lx <π rx <π 	 for all x ∈ X. Let 〈〈p1, p2〉〉π = { q ∈ LRX | p1 ≤π q <π p2 }
and for Y ⊆ X, let

[[Y ]]π =
⋃

u∈Y

〈〈lu, ru〉〉π = { q ∈ LRX | lu ≤π q <π ru for some u ∈ Y } ,
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which may contain some elements of LRX − LRY . The interval graph Gπ of an
interval representation π on V is (V,Eπ) where

Eπ = { {u, v} ⊆ V | 〈〈lu, ru〉〉π ∩ 〈〈lv, rv〉〉π �= ∅ and u �= v }.

Figure 2 shows an example of an interval graph.
This section presents an FPT algorithm for the interval edge deletion problem

w.r.t. the treewidth. Let G = (V,E) be an input graph and s a node of a nice
tree-decomposition T of G. On each node s of T , for each interval representation
ρ over X≤s that gives an interval subgraph of (X≤s, E≤s), we would like to
remember some pieces of information about ρ, which we call the “abstraction”
of ρ. The abstraction includes the linear order π over LRXs

that restricts ρ. In
addition, we remember how the intervals of the forgotten vertices intersect the
points of the active vertices using three sets I, J,K ⊆ LRX . Figure 3 explains
the meaning of those sets. When p ∈ I, (p, sucπ(p)) intersects with a forgotten
interval. If p ∈ J , p is within a forgotten interval. Moreover if p ∈ K, then the
interval (p, sucπ(p)) is properly covered by some forgotten intervals. Using those
sets, we can introduce new interval without making it intersect with forgotten
intervals.

More formally, for an interval representation ρ over X≤s such that Gρ is a
subgraph of (X≤s, E≤s), we define the abstraction A (ρ, s) of ρ for s to be the
quintuple (π, I, J,K, c) such that

– π is the restriction of ρ to LRXs
,

– I = { p ∈ LRXs
| 〈〈p, sucπ(p)〉〉ρ ∩ [[X≤s − Xs]]ρ �= ∅ },

– J = { p ∈ LRXs
| p ∈ [[X≤s − Xs]]ρ },

– K = { p ∈ LRXs
| 〈〈p, sucπ(p)〉〉ρ ⊆ [[X≤s − Xs]]ρ },

– c = |E≤s − Eρ − Es|
= |{ {u, v} ∈ E≤s | u /∈ Xs and 〈〈lu, ru〉〉ρ ∩ 〈〈lv, rv〉〉ρ = ∅ }|.

Note that p ∈ K implies p, sucπ(p) ∈ J . Moreover, if p ∈ J or sucπ(p) ∈ J ,
then p ∈ I. We say that A (ρ′, s) = (π′, I ′, J ′,K ′, c′) dominates A (ρ, s) =
(π, I, J,K, c) iff π′ = π, I ′ ⊆ I, J ′ ⊆ J , K ′ ⊆ K, and c′ ≤ c. In this case, every
possible way of introducing new intervals to ρ is also possible for ρ′ by cheaper or
equivalent cost. Therefore, it is enough to remember A (ρ′, s) discarding A (ρ, s).
We call a set of abstractions reduced if it has no pair of distinct elements such
that one dominates the other.

Our algorithm calculates a reduced set Is of abstractions of interval rep-
resentations of interval subgraphs of (X≤s, E≤s) for each node s of T which
satisfies the following invariant.

Condition 1

– Every element (π, I, J,K, c) ∈ Is is the abstraction of some interval repre-
sentation of an interval subgraph of (X≤s, E≤s) for Xs,

– Any interval representation ρ of any interval subgraph of (X≤s, E≤s) has an
element of Is that dominates its abstraction A (ρ,Xs).
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(a)

lu ru

p sucπ(p)

lx rx

(b)

lu ru

p

lx rx

(c)

lu ru lv rv

lw rw

p sucπ(p)

lx rx

Fig. 3. Typical situations with (a) p ∈ I, (b) p ∈ J , (c) p ∈ K, where A (ρ, s) =
(π, I, J, K, c) and u, v, w ∈ X≤s − Xs are forgotten vertices. In the respective cases, we
cannot introduce a new interval (lx, rx) that (a) covers (p, sucπ(p)), (b) includes p, (c)
overlaps (p, sucπ(p)).

Since Is is reduced, if Xs = ∅, we have Is = {(o, I, ∅, ∅, c)} for some I ⊆ {⊥}
and c ∈ N, where o is the trivial order such that ⊥ <o 	. Particularly for the root
node s, the number c is the least number such that one can obtain an interval
subgraph by removing c edges from G. That is, c is the solution to our problem. If
s is a leaf, Is = {(o, ∅, ∅, ∅, 0)} by definition. It remains to show how to calculate
Is from the child(ren) of s, while preserving the invariant (Condition 1).

Introduce Node: Suppose that s has just one child t such that Xs = Xt ∪ {x}.
For (π, I, J,K, c) in It, we say an extension π′ of π to Xs respects E, I, J,K if

– {x, u} /∈ E for u ∈ Xt implies 〈〈lx, rx〉〉π′ ∩ 〈〈lu, ru〉〉π′ = ∅,
– p ∈ I implies 〈〈p, sucπ(p)〉〉π′ � 〈〈lx, rx〉〉π′ ,
– p ∈ J implies p /∈ 〈〈lx, rx〉〉π′ ,
– p ∈ K implies 〈〈p, sucπ(p)〉〉π′ ∩ 〈〈lx, rx〉〉π′ = ∅,

respectively. If π′ does not respect some of E, I, J,K, then it means that we
are creating an edge between two vertices which are not connected in the input
graph G. For each interval representation π′ extending π to LRXs

that respects
E, I, J,K, we put one or two elements into I ′

s by the following manner. If rx �=
sucπ′(lx), we add (π′, I[rx/predπ′(rx)], J,K, c) to I ′

s (see Fig. 4 (a)). Otherwise,
let p = predπ′(lx), for which it holds that p <π′ lx <π′ rx <π′ sucπ(p). We have
four exhaustive cases shown in Fig. 4 (b). If either p /∈ I or J∩{p, sucπ(p)} = {p},
we add (π′, I, J,K, c) to I ′

s . If sucπ(p) ∈ J , we add (π′, I ∪{rx}, J,K, c) to I ′
s . If

p ∈ I and J∩{p, sucπ(p)} = ∅, we add both (π′, I, J,K, c) and (π′, I[rx/p], J,K, c)
to I ′

s . Those exhaust all the possibilities. We then obtain Is by reducing I ′
s .

Forget Node: Suppose that s has just one child t such that Xt = Xs ∪ {x}. For
each (π, I, J,K, c) in It, in accordance with the definition of abstractions, we
add to I ′

s the quintuple (π′, I ′, J ′,K ′, c) where

– π′ is the restriction of π,
– I ′ = { p ∈ LRXs

| 〈〈p, sucπ′(p)〉〉π ∩ (I ∪ 〈〈lx, rx〉〉π) �= ∅ },
– J ′ = { p ∈ LRXs

| p ∈ J ∪ 〈〈lx, rx〉〉π },
– K ′ = { p ∈ LRXs

| 〈〈p, sucπ′(p)〉〉π ⊆ K ∪ 〈〈lx, rx〉〉π },
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p0

lx

p1 predπ′(rx)
rx

pk

⊆ [[X≤t − Xt]]ρ
∈ LRXt

(a) When rx �= sucπ′(lx). We assume possible forgotten intervals should appear left
to lx and right to rx to prevent (lx, rx) from intersecting forgotten intervals.

)

p

lx rx

sucπ(p)

p /∈ I

p ∈ J and sucπ(p) /∈ J

sucπ(p) ∈ J
⎫⎬
⎭ p, sucπ(p) /∈ J and p ∈ I

(b) When rx = sucπ′(lx). Our algorithm does not consider all the admissible ex-
tensions ρ′ of π′. For example, we do not put (π, I ∪ {p, rx}, J, K, c) into I ′

s as
illustrated in the parentheses above, since it is dominated by other possibilities and
will be absent in Is anyway.

Fig. 4. Illustrating how we insert lx and rx into previously determined interval rep-
resentation. Thick lines illustrate [[X≤t − Xt]]ρ for a possible extension ρ such that
A (ρ, Xt) = (π, I, J, K, c).

– c′ = c + |{ {x, u} ∈ E | 〈〈lu, ru〉〉π ∩ 〈〈lx, rx〉〉π = ∅ and u ∈ Xs }|.
Then we obtain Is by reducing I ′

s .

Join Node: Suppose that s has two children t1 and t2, where Xs = Xt1 = Xt2 .
We say that A1 = (π1, I1, J1,K1, c1) ∈ It1 and A2 = (π2, I2, J2,K2, c2) ∈ It2

are compatible if π1 = π2 and J1 ∩J2 = I1 ∩K2 = K1 ∩ I2 = ∅. If A1 and A2 are
not compatible, any interval representation ρ on X≤s which extends ρ1 and ρ2
will connect two vertices which are not adjacent in the input graph G for any
interval representations ρi on X≤ti of which Ai is the abstraction for i = 1, 2.
For each compatible pair (A1, A2), one can find an interval representation ρ
on X≤s that forms a subgraph of (X≤s, E≤s) which extends some ρ1 and ρ2
whose abstractions are A1 and A2, respectively. Then we add the quintuple
(π1, I1 ∪ I2, J1 ∪ J2, K1 ∪ K2, c1 + c2) to I ′

s . We obtain Is by reducing I ′
s .

Theorem 1. The edge deletion problem for interval graphs can be solved in
O(|V |N2poly(k)) time where N = (2k)! · 22k for the treewidth k of G. If k is the
pathwidth, it can be solved in O(|V |Npoly(k)) time.

Proof. Let k be the maximum size of the assigned set Xs to a node of a nice tree-
decomposition. Each Is may contain at most N = (2k)!/2k · (2k)3 = (2k)! · 22k
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elements. To calculate Is from It for children t of s, it takes O(N �poly(k)) time
for some polynomial function poly, if it has at most � children. Since the nice
tree-decomposition has O(|V |) nodes, we obtain the conclusion.

4 Algorithms for Other Graph Classes

We in this section present Edge-Deletion algorithms on some graph classes
related to interval graphs by modifying the algorithm in the previous section.

4.1 Proper Interval Graphs

An interval representation π is said to be proper if there are no u, v ∈ V such that
lu <π lv <π rv <π ru. An interval graph is proper if it admits a proper interval
representation. The algorithm presented in Sect. 3 can easily be modified so that
it solves the edge deletion problem for proper interval graphs. In accordance
with the definition of a proper interval representation, we simply require π′ in
Introduce Node to be a proper interval representation. Under the restriction, we
see that I = { p | p ∈ J or sucπ(p) ∈ J } if (π, I, J,K, c) ∈ Is. Then, I can be
discarded from each abstraction.

Corollary 1. The edge deletion problem for proper interval graphs can be solved
in O(|V |N2poly(k)) time where N = (2k)! · 2k for the treewidth k of G. If k is
the pathwidth, it can be solved in O(|V |Npoly(k)) time.

4.2 Trivially Perfect Graphs

An interval representation π is said to be nested if there are no u, v ∈ V , such
that lu <π lv <π ru <π rv. A trivially perfect graph is an interval graph that
admits a nested interval representation. The algorithm presented in Sect. 3 can
easily be modified so that it solves the edge deletion problem for trivially perfect
graphs. In accordance with the definition of the graph class, we simply require π′

in Introduce Node to be a nested interval representation. Under the restriction,
we see that lv ∈ J if and only if rv ∈ J if and only if lv ∈ K. Therefore, we do
not need to have the set J any more.

Corollary 2. The edge deletion problem for trivially perfect graphs can be solved
in O(|V |N2poly(k)) time where N = (2k)! · 2k for the treewidth k of G. If k is
the pathwidth, it can be solved in O(|V |Npoly(k)) time.

4.3 Circular-Arc Graphs

Circular-arc graphs are a generalization of interval graphs which have a “circu-
lar” interval representation. For a linear order π over a set S, we let

〈〈p1, p2〉〉π =

{
{ q ∈ S | p1 ≤π q <π p2 } if p1 ≤π p2,

{ q ∈ S | p1 ≤π q ∨ q <π p2 } if p2 <π p1.
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A circular-arc graph is a graph Gπ = (V,E) such that

E = { {u, v} ⊆ V | 〈〈lu, ru〉〉π ∩ 〈〈lv, rv〉〉π �= ∅ }

for some linear order π over LV ∪ RV . Note that this set contains neither 	
nor ⊥. The algorithm presented in Sect. 3 can easily be modified so that it
solves the edge deletion problem for circular-arc graphs by replacing the defi-
nition of 〈〈p1, p2〉〉π as above, and defining sucπ(maxπ LRV ) = minπ LRV and
predπ(minπ LRV ) = maxπ LRV . Since we allow ru <π lu, the number of admis-
sible circular interval representations is bigger than that of (ordinary) interval
representations. This affects the computational complexity.

Corollary 3. The edge deletion problem for circular-arc graphs can be solved in
O(|V |N2poly(k)) time where N = (2k)! · 23k for the treewidth k of G. If k is the
pathwidth, it can be solved in O(|V |Npoly(k)) time.

4.4 Threshold Graphs

Threshold graphs are special cases of trivially perfect graphs, which can be
defined in several different ways. Here we use a pair of a vertex subset W ⊆ V
and a linear order π over RV as a threshold interval representation. We say that
vertices u and v intersect on (W,π) if and only if u ∈ W and rv <π ru or
the other way around. A threshold graph is a graph GW,π = (V,EW,π) where
(W,π) is a threshold interval representation on V and EW,π = { {u, v} ⊆ V |
u and v intersect on (W,π) }. By extending π to π′ over LRV so that lw <π′ rv

for all w ∈ W and v ∈ V and sucπ′(lu) = ru for all u ∈ V − W , then the
induced interval graph coincides with the threshold graph. To attain drastic
improvement on the complexity, we design an algorithm for the edge deletion
problem for threshold graphs from scratch, rather than modifying the one for
interval graphs.

For a threshold representation (Y, ρ) of a subgraph GY,ρ = (X≤s, EY,ρ), we
define its abstraction A ((Y, ρ), s) = (Y ′, π, b, p, c) as follows: (1) π is the restric-
tion of ρ to RXs

, (2) Y ′ = Y ∩ Xs, (3) if Y ′ = Y , then b = 0 and p = maxπ{ p ∈
RXs

| p <ρ ry for all y ∈ X≤s − Xs }, (4) if Y ′ �= Y , then b = 1 and p =
maxπ{ p ∈ RXs

| p <ρ ry for some y ∈ Y −Y ′ } , and (5) c = |E≤s −EY,ρ −Es| =
|{ {u, v} ∈ E | {u, v} � Xs and u and v do not intersect on (Y, ρ) }|.

We say that (Y ′, π′, b′, p′, c′) dominates (Y, π, b, p, c) if Y ′ = Y , π′ = π,
c′ ≤ c, and either (a) b′ = b = 0 and p′ ≥π p, (b) b′ = b = 1 and p′ ≤π p, or (c)
b′ = 0 and b = 1. Using the above invariant, we can provide an algorithm for
Threshold-Edge-Deletion.

Theorem 2. The edge deletion problem for threshold graphs can be solved in
O(|V |N2poly(k)) time where N = k! · 2k for the treewidth k of G. If k is the
pathwidth, it can be solved in O(|V |Npoly(k)) time.
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5 Conclusion

We propose FPT algorithms for Edge-Deletion to some intersection graphs
parameterized by treewidth in this paper. Our algorithms maintain partial inter-
section models on a node of a tree decomposition with some restrictions and
extend the models consistently for the restrictions in the next step. We expect
that the ideas in our algorithms can be applied to other intersection graphs
whose intersection models can be represented as linear-orders, for example cir-
cle graphs, chain graphs and so on, and to Vertex-Deletion of intersection
graphs.

We have the following questions as future work:

– Do there exist single exponential time algorithms for the considered problems,
that is, O∗(2tw(G)) time, or can we show matching lower bounds assuming
the Exponential Time Hypothesis?

– Are there FPT algorithms parameterized by treewidth for C-Completion

which is to find the minimum number of adding edges to obtain a graph in an
intersection graph class C? We can naturally apply the idea of our algorithms
to C-Completion problems. While C-Edge-Deletion algorithms do not
allow introduced objects to intersect with forgotten objects, C-Completion

algorithms do allow it with the cost of addition of new edges. Thus C-
Completion algorithms based on this naive approach will be XP algorithms
since we have to remember the number of forgotten objects in the represen-
tation to count the number of intersections between the introduced objects
and forgotten objects.

– Are there FPT algorithms for Edge-Deletion to intersection graphs defined
using objects on a plane, like unit disk graphs? The intersection graph classes
discussed in this paper are all defined using objects aligned on a line. Going
up to a geometric space of higher dimension is a challenging topic.
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