Skip to main content

Weight-Dependent Gates for Differentiable Neural Network Pruning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12539))

Included in the following conference series:

Abstract

In this paper, we propose a simple and effective network pruning framework, which introduces novel weight-dependent gates to prune filter adaptively. We argue that the pruning decision should depend on the convolutional weights, in other words, it should be a learnable function of filter weights. We thus construct the weight-dependent gates (W-Gates) to learn the information from filter weights and obtain binary filter gates to prune or keep the filters automatically. To prune the network under hardware constraint, we train a Latency Predict Net (LPNet) to estimate the hardware latency of candidate pruned networks. Based on the proposed LPNet, we can optimize W-Gates and the pruning ratio of each layer under latency constraint. The whole framework is differentiable and can be optimized by gradient-based method to achieve a compact network with better trade-off between accuracy and efficiency. We have demonstrated the effectiveness of our method on Resnet34 and Resnet50, achieving up to 1.33/1.28 higher Top-1 accuracy with lower hardware latency on ImageNet. Compared with state-of-the-art pruning methods, our method achieves superior performance(This work is done when Yun Li, Weiqun Wu and Zechun Liu are interns at Megvii Inc (Face++)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. arXiv preprint arXiv:1812.00332 (2018)

  2. Cao, S., et al.: SeerNet: predicting convolutional neural network feature-map sparsity through low-bit quantization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11216–11225 (2019)

    Google Scholar 

  3. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with the hashing trick. In: International Conference on Machine Learning (ICML), pp. 2285–2294 (2015)

    Google Scholar 

  4. Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: training deep neural networks with binary weights during propagations. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 3123–3131 (2015)

    Google Scholar 

  5. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1. arXiv preprint arXiv:1602.02830 (2016)

  6. Dai, X., Y., et al.: ChamNet: towards efficient network design through platform-aware model adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11398–11407 (2019)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

    Google Scholar 

  8. Ding, X., Ding, G., Guo, Y., Han, J.: Centripetal SGD for pruning very deep convolutional networks with complicated structure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4943–4953 (2019)

    Google Scholar 

  9. Ding, X., Ding, G., Guo, Y., Han, J., Yan, C.: Approximated oracle filter pruning for destructive CNN width optimization. arXiv preprint arXiv:1905.04748 (2019)

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  11. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: Proceedings of International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  13. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2019)

    Google Scholar 

  14. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., Han, S.: AMC: AutoML for model compression and acceleration on mobile devices. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 815–832. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_48

    Chapter  Google Scholar 

  15. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  16. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  17. Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 317–334. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_19

    Chapter  Google Scholar 

  18. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 4107–4115 (2016)

    Google Scholar 

  19. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  20. Jia, K., Tao, D., Gao, S., Xu, X.: Improving training of deep neural networks via singular value bounding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2017, pp. 3994–4002 (2017)

    Google Scholar 

  21. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. In: Proceedings of International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  22. Li, Y., et al.: Exploiting kernel sparsity and entropy for interpretable CNN compression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2800–2809 (2019)

    Google Scholar 

  23. Li, Y., Wang, L., Peng, S., Kumar, A., Yin, B.: Using feature entropy to guide filter pruning for efficient convolutional networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11728, pp. 263–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30484-3_22

    Chapter  Google Scholar 

  24. Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional networks via global & dynamic filter pruning. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2425–2432 (2018)

    Google Scholar 

  25. Lin, S., et al.: Towards optimal structured CNN pruning via generative adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2790–2799 (2019)

    Google Scholar 

  26. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 806–814 (2015)

    Google Scholar 

  27. Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., Sun, J.: MetaPruning: meta learning for automatic neural network channel pruning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3296–3305 (2019)

    Google Scholar 

  28. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.-T.: Bi-real net: enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 747–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_44

    Chapter  Google Scholar 

  29. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2736–2744 (2017)

    Google Scholar 

  30. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  31. Luo, J.H., Wu, J.: Autopruner: an end-to-end trainable filter pruning method for efficient deep model inference. Pattern Recognit. (PR) 107461 (2020)

    Google Scholar 

  32. Luo, J.H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural network compression. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5058–5066 (2017)

    Google Scholar 

  33. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  34. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

  35. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation for neural network pruning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  36. Paszke, A., Gross, S., Chintala, S., Chanan, G.: Pytorch: tensors and dynamic neural networks in python with strong GPU acceleration (2017)

    Google Scholar 

  37. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  38. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  39. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  40. Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10734–10742 (2019)

    Google Scholar 

  41. Xu, Y., et al.: Latency-aware differentiable neural architecture search. arXiv preprint arXiv:2001.06392 (2020)

  42. Yang, H., Zhu, Y., Liu, J.: ECC: platform-independent energy-constrained deep neural network compression via a bilinear regression model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11206–11215 (2019)

    Google Scholar 

  43. Yang, T.-J., et al.: NetAdapt: platform-aware neural network adaptation for mobile applications. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 289–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_18

    Chapter  Google Scholar 

  44. Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  45. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank and sparse decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7370–7379 (2017)

    Google Scholar 

  46. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6848–6856 (2018)

    Google Scholar 

  47. Zhao, C., Ni, B., Zhang, J., Zhao, Q., Zhang, W., Tian, Q.: Variational convolutional neural network pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2780–2789 (2019)

    Google Scholar 

  48. Zhou, Y., Zhang, Y., Wang, Y., Tian, Q.: Accelerate CNN via recursive Bayesian pruning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3306–3315 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported the Equipment Pre-Research Foundation of China under grant No. 61403120201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y. et al. (2020). Weight-Dependent Gates for Differentiable Neural Network Pruning. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12539. Springer, Cham. https://doi.org/10.1007/978-3-030-68238-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68238-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68237-8

  • Online ISBN: 978-3-030-68238-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics