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Abstract. Modern approaches to pose and body shape estimation have
recently achieved strong performance even under challenging real-world
conditions. Even from a single image of a clothed person, a realistic look-
ing body shape can be inferred that captures a users’ weight group and
body shape type well. This opens up a whole spectrum of applications
— in particular in fashion — where virtual try-on and recommendation
systems can make use of these new and automatized cues. However, a
realistic depiction of the undressed body is regarded highly private and
therefore might not be consented by most people. Hence, we ask if the au-
tomatic extraction of such information can be effectively evaded. While
adversarial perturbations have been shown to be effective for manipu-
lating the output of machine learning models — in particular, end-to-end
deep learning approaches — state of the art shape estimation methods are
composed of multiple stages. We perform the first investigation of differ-
ent strategies that can be used to effectively manipulate the automatic
shape estimation while preserving the overall appearance of the original
image.

1 Introduction

Since the early attempts to recognize human pose in images [65,19], we have seen
a transition to real-world applications where methods operate on challenging
real-world conditions in uncontrolled pose and lighting. We have seen more re-
cently progress towards extracting richer representations beyond the pose. Most
notably, a full body shape that is represented by a 3D representation or a low
dimensional manifold (SMPL) [32]. It has been shown that such representations
can be obtained from fully clothed persons — even in challenging conditions from
a single image [7] as well as from web images of a person [50].

On the one hand, this gives rise to various applications — most importantly in
the fashion domain. The more accurate judgment of fit could minimize clothing
returns, and avatars and virtual try-on may enable new shopping experiences.
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Fig.1: A realistic depiction of the undressed body is considered highly private
and therefore might not be consented by most people. We prevent automatic
extraction of such information by small manipulations of the input image that
keep the overall aesthetic of the image.

Therefore, it is unsurprising that such technology already sees gradual adaption
in businesses®, as well as start-ups *.

On the other hand, the automated extraction of such highly personal in-
formation from regular, readily available images might equally raise concerns
about privacy. Images contain a rich source of implicit information that we are
gradually learning to leverage with the advance of image processing techniques.
Only recently, the first organized attempts were made to categorize private in-
formation in images [42] to raise awareness and to activate automatic protection
mechanisms.

To control private information in images, a range of redaction and sanitiza-
tion techniques have been introduced [11,55,59]. For example, evasion attacks
have been used to disable classification routines to avoid extraction of informa-
tion. Such techniques use adversarial perturbations to throw off a target classi-
fier. It has been shown that such techniques can generalize to related classifiers
[39], or can be designed under unknown/black-box models [36,12,8,54,27].

Unfortunately, such techniques are not directly applicable to state-of-the-
art shape estimation techniques [7,3,31,2,21], as they are based on multi-stage
processing. Typically, deep learning is used to extract person keypoints, and a
model-fitting /optimization stage leads to the final keypoint estimation of pose
and shape. As a consequence, there is no end-to-end architecture that would
allow the computation of an image gradient needed for adversarial perturbations.

Today, we are missing successful evasion attacks on shape extraction meth-
ods. In this paper, we investigate to what extent shape extraction can be avoided
by small manipulations of the input image (Figure 1). We follow the literature on
adversarial perturbations and require our changes in the input image to be of a
small Euclidean norm. After analyzing a range of synthetic attack strategies that
operate at the keypoints level, we experimentally evaluate their effectiveness to
throw off multi-stage methods that include a model fitting stage. These attacks

3 https://www.cnet.com/news/amazon-buys-body-labs-a-3d-body-scanning-tech-
startup/
* https://bodylabs.io/en/
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turn out to be highly effective while leaving the images visually unchanged. In
summary, our contributions are:

— An orientative user study of concerns w.r.t. privacy and body shape estima-
tion in different application contexts.

— Analysis of synthetic attacks on 2D keypoint detections.

— A new localized attack on keypoint feature maps that requires a smaller
noise norm for the same effectiveness.

— Evaluation of overall effectiveness of different attacks strategies on shape
estimation. We show the first successful attacks that offer an increase in
privacy with negligible loss in visual quality.

2 Related Works

This work relates to 3D human shape estimation methods, privacy, and adver-
sarial image perturbation techniques. We will here cover recent papers in these
three domains and some of the key techniques directly relating to our approach.

Privacy and Computer Vision. Recent developments in computer vision
techniques [16,30,24,37], increases concerns about extraction of private informa-
tion from visual data such as age [6], social relationships [63], face detection
[56,61], landmark detection [69], occupation recognition [52], and license plates
[71,68,11]. Hence several studies on keeping the private content in visual data
began only recently such as adversarial perturbations [33,43], automatic redac-
tion of private information [11], predicting privacy risks in images [12], privacy-
preserving video capture [1,16,35,19], avoiding face detection [64,22], full body
re-identification [38] and privacy-sensitive life logging [25,29]. None of the previ-
ous work in this domain studied the users’ shape privacy preferences. Hence, we
present a new challenge in computer vision aimed at preventing automatic 3D
shape extraction from images.

3D Body Shape Estimation. Recovery of 3D human shape from a 2D
image is a very challenging task due to ambiguities such as depth and unknown
camera data. This task has been facilitated by the availability of 3D generative
body models learned from thousands of scans of people [4,48,32], which capture
anthropometric constraints of the population and therefore reduce ambiguities.
Several works [50,53,15,70,13,7,26,23,70] leverage these generative models to es-
timate 3D shape from single or multiple images, using shading cues, silhouettes
and appearance. Recent model based approaches are using deep learning based
2D detections [10] — by either fitting a model to them at test time [2,50,7,3,21]
or by using them to supervise bottom-up 3D shape predictors [40,44,28,60,58,2].
Hence, to evade recent shape estimators, we study different strategies to at-
tack the 2D keypoint detections while preserving the overall appearance of the
original image.

Adversarial Image Perturbation. Adversarial examples for deep neural
networks were first reported in [57,20] demonstrating that deep neural networks
are being vulnerable to small adversarial perturbations. This phenomenon was
analyzed in several studies [5,66,17,51,18], and different approaches have been
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Fig. 2: Participants were asked to indicate their comfort level for sharing these
images publicly, considering they are the subject in these images.
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proposed to improve the robustness of neural networks [13,14]. Fast Gradient
Sign Method (FGSM) and several variations of it were introduced in [20,34] for
generating adversarial examples that are indistinguishable-to the human eye—
from the original image, but can fool the networks. However, these techniques do
not apply to state of the art body shape estimation as those are based on multi-
stage processing. Typically, shape inference consists in fitting a body model to
detected skeleton keypoints. Consequently, we perturb the 2D keypoints to pro-
duce an error in the shape fitting step. Cisse et al. [15], proposed a method to
fool 2D pose estimation. None of these techniques propose a solution to evade
model based shape estimation. In order to evade 3D shape estimation in a subtle
manner, we attack by removing and flipping individual keypoints. Since these at-
tacks simulate typical failure modes of detectors (mis-detections due to occlusion
and keypoint flips), they are more difficult to identify by the defender.

3 Understanding Users Shape Privacy Preferences

Modern body shape methods [50,7,40,28] infer a realistic looking 3D body shape
from a single photo of a person. The estimated 3D body captures user weight
group and body shape type. However, such a realistic depiction of the undressed
body is considered highly private and therefore might not be consented by most
people. We performed a user study to explore the users’ personal privacy prefer-
ences related to their body shape data. Our goal was to study the degree to which
various users are sensitive to sharing their shape data such as height, different
body part measurement, and their 3D body shape in different contexts. This
study was approved by our university’s ethical review board and is described
next.

User Study. We split the survey into three parts. In the first part of the sur-
vey, our goal was to understand users image sharing preferences and the users’
knowledge of what type of information could be extracted from a single image.

Part1-Question 1: Users are shown Figure 2 without the 3D shape data.
Participants are asked how comfortable they are sharing such images publicly,
considering they are the subject in these images. Responses are collected on a



Body Shape Privacy in Images 5

L W4¥ Attributes: Location of the image
) A Gender Weight
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3 Age Circumferences of the hips
mmmm Fashion style Clothing size such as medium, small, ...
~\ By Personality traits Body mass index (BMI)
A . None of above
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Fig.3: In Question 2 participants were shown this image, and were asked to
select the attributes from the list that could be extracted.

Fig. 4: Participants were asked to judge the closeness of the depicted 3D shape
to the actual body of the person in the images.

scale of 1 to 5, where: (1) Extremely comfortable, (2) Slightly comfortable, (3)
Somewhat comfortable, (4) Not comfortable, and (5) Extremely uncomfortable.

Part1-Question 2: Participants were shown Figure 3, and were asked which
attributes could be extracted from this image.

In the second part, users were introduced to 3D shape models by showing
them images of 8 people along with their 3D body shape, as shown in Figure 4.
The purpose of part 2 was to understand the user’s perceived closeness of ex-
tracted 3D shapes to the original images, and their level of comfort with them.

Part2-Question 3: Participants were asked to rate how close the estimated
3D shape is to the person in the image. Responses are collected on a scale of 1
to 5, where: (1) Untrue of the person in the image, (2) somewhat untrue of the
person in the image, (3) Neutral, (4) Somewhat true of the person in the image,
and (5) True of the person in the image.

Part2-Question 4: Participants were shown Figure 2 asked to indicate how
comfortable they are sharing such a photograph along with 3D shape data pub-
licly, considering they are the subject in these images. We collected responses on
a scale of 1 to 5, similar to Question 1.
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In the third part of this survey, we explore users preferences on what type of
body shape information they would share for applications such as (a) Health in-
surance, (b) Body scanners at airport, (¢) Online shopping platforms, (d) Dating
platforms, and (e) Shape tracking applications (for sport, fitness, ...).

Part3-Question 5: Users were asked their level of comfort on a scale of 1 to
5 for the applications mentioned above.

Participants. We collect responses of 90 unique users in this survey. Participants
were not paid to take part in this survey. Out of the 90 respondents, 43.3% were
female, 55.6% were male, and 1.1% were queer. The dominant age range of
our participants (63.3%) was in 21-39, followed by 30-39 (23.3%). Participants
have a wide range of education level, where 46.7% has master degree, 21.1% has
bachelor degree®.

Analysis. The results of Partl-Question 1 and Part2-Question j are shown
in Figure 5a. We see that majority of the users do not feel comfortable or
they feel extremely uncomfortable (36.0%, 30.0%) sharing their 3D data publicly
compared to sharing only their images (29.0%, 14.0%).

In Part1-Question 2, the top three selected attributes were: gender (98.9%),
pose (87.8%), and age (85.6%). Shape related attributes such as body mass index
(BMI) (47.8%), weight (63.3%), and 3D body shape (66.7%) were not in the top
selected attributes, indicating that many participants were unaware that such
information could be extracted from an image using automatic techniques.

In Part3-Question3, users were asked to judge the quality of the presented
3D models. Around 43.0% of the participants believe the presented shape is
Somewhat true of the person in the image, and 31.0% think the 3D mesh is
true to the person in the picture. This indicates that recent approaches can infer
perceptually faithful 3D body shapes under clothing from a single image.

Figure 5b presents the results from Part3-Question 5. Participants show a
high level of discomfort in sharing their 3D shape data for multiple applica-
tions. In all investigated applications except for fitness, the majority of the users
responded with “discomfort of some degree”.

The user study demonstrates that users are concerned about the privacy of
their body shape. Consequently, we present next a framework to prevent 3D
shape extraction from images.

4 Shape Evasion Framework

Model-based shape estimation methods from a 2D image are based on a two-
stage approach. First, a neural network is used to detect a set of 2D body key-
points, then a 3D body model fits the detected keypoints. Since this approach
is not end-to-end, it does not allows direct computation of the image gradient
needed for adversarial perturbation. To this end, we approach the shape evasion

5 Further details on participants demographic data are presented in the supplementary
materials.
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Fig.5: (a) Comfort level of participants in sharing images with and without 3D
mesh data, considering they are the subject in these images. (b) Comfort level
of the participant for sharing their 3D mesh data with multiple applications.
Results are shown as the percentage of times an answer is chosen.
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Fig.6: The summary of our framework. We assume that we have full access to
the parameters of the network. The attacker breaks the detections by removing
or flipping of a keypoint. Hence the final estimated shape does not depict the
person in the image.

by attacking the keypoints detection network. In section 4.1, we give a brief
introduction on model-based shape estimation method. In section 4.2, we intro-
duced a local attack that allows targeted attacks on keypoints. Figure 6 shows
an overview of our approach.

4.1 Model Based Shape Estimation

The Skinned Multi-Person Linear Model (SMPL) [32] is a state of the art gen-
erative body model. The SMPL function M (3, 8), uses shape 3 and poses 8 to
parametrize the surface of the human body that is represented using N = 6890
vertices. The shape parameters 3 € R!? encode changes in height, weight and
body proportions. The body pose 8 € R3P | is defined by a skeleton rig with
P = 24 keypoints. The 3D skeleton keypoints are predicted from body shape
via J(B). We can use a global rigid transform Ry To pose the SMPL keypoint.
Hence, Ry(J(3);) denotes a posed 3D keypoint i. In order to estimate 3D body
shape from a 2D image I, several works [50,7,31], minimize an objective function
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composed of a keypoint-based data term, pose priors, and a shape prior.
E(/Bae) :EP8(0)+EP5»(6)+EJ(/630aKaJcst) (1)

where Ep,(6), and Ep,(8) are the pose and shape prior terms as described
in [7]. The E;(8,0;K, Jost) is the keypoint-based data term which penalizes the
weighted 2D distance between estimated 2D keypoints, Jest, and the projected
SMPL body keypoint Ry(J(8)):

E;(B,0;K,Jes) = Z wip(ITg (Ro(J(B):)) — Jest,i) (2)

keypointi

where Ik is the projection from 3D to 2D of the camera with parameters K and
p a Geman-McClure penalty function which is robust to noise in the 2D keypoints
detections. w; indicates the confidence of each keypoints estimate, provided by
2D detection method. For cases such as occluded or missing keypoints, w is very
low, and hence the data term will be driven by pose prior term. Furthermore, the
prior term avoids impossible poses. Shape evasion can be achieved by introducing
error in 2D keypoints detection J.s;. We use Adversarial perturbation to fool the
pose detection method by either removing a keypoint or filliping two keypoints
with each other.

4.2 Adversarial Image Generation

The State-of-the-art 2D pose detection methods such as [9] use a neural network
f parametrized by ¢, to predict a set of 2D locations of anatomical keypoints J ¢
for each person in the image. The network produces a set of 2D confidence maps
S = {S1,S2,83,...,Sp}, where S; € R¥*" i € 1,2,3,..., P, is a confidence
map for the keypoints ¢ and P is total number of Keypoints. Assuming that
a single person is in the image, then each confidence map contains a single
peak if the corresponding part is visible. The final set of 2D keypoints Js
are achieved by performing non-maximum suppression per each confidence map.
These confidence maps are shown in Figure 6.

To attack a keypoint we used adversarial perturbation. Adding adversarial
perturbation a to an image I will causes a neural network to change its prediction
[57].The adversarial perturbation a is defined as the solution to the optimization
problem

argmin a2 + L(f(I + a; ¢),S"). ()

L is the loss function between the network output and desired confidence maps
S*.

Removing and Flipping of Keypoints: The S™ is defined for removing and flipping
of keypoints. To remove a keypoint, we put its confidence map to zero. For exam-
ple if we are attacking the first keypoint we have: S* = {S; =0,S,,S3,...,Sp}.
To flip two key points we exchanged the values of two confidence map as S%, 87 =
S7,8". In case i,j = 2,3 we have 8* = {81,S3,S5,...,Sp}. An example of re-
moving and flipping of the keypoint is shown in Figure 6.
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Fast Gradient Sign Method (FGSM) [20]: FGSM is a first order optimization
schemes used in practice for Equation 3, which approximately minimizes the £,
norm of perturbations bounded by the parameter e. The adversarial examples
are produced by increasing the loss of the network on the input I as

% = I+ € sign(V,L(f(I; 9),S%)). (4)

We call this type of attack global as the perturbation is applied to the whole
image. This perturbation results in poses with several missing keypoints or poses
outside of natural human pose manifold. While this will often make the subse-
quent shape optimization step fail (Eq. (2)), the approach has two limitations:
i) this attack requires a large perturbation and ii) the attack is very easy to
identify by the defender.

Masked Fast Gradient Sign Method (MFGSM): To overcome the limitations
of the global approach, we introduced Masked FGSM. This allow for localized
perturbation for more targeted attacks. This method will generate poses, which
are close to ground truth pose, yet have a missing keypoint that will cause shape
evasion—while requiring smaller perturbations as shown in the experiments. We
will refer to this scheme as “local” in the rest of the paper. To attack a specific
keypoint we solve the following optimization problem in a iterative manner as:

g =1
Itaff = Chp(ltadv —a- Sign(vlgde(f(Itadv; $),8%) © M),e€) (5)

where mask M € R¥*" is used to attack a keypoint Jesti € R? selectively. M

is defined as:
M:{1 if (2 — Jesr)? =12

r controls the spread of the attack and x € R? are the pixel coordinates. To
ensure the max norm constraint of perturbation a being no greater than e is
preserved, the clip(z,€) is used, which keeps the values of z in the range[z —
€, 2+ €.

5 Experiments

The overall goal of the experimental section is to provide an understanding and
the first practical approach to evade body shape estimation and hence protect
the privacy of the user. We approach this by systematically studying the ef-
fect of attacking keypoint detections on the overall shape estimation pipeline.
First, we study synthetic attacks based on direct manipulation of keypoints loca-
tions, where we can observe the effects on body shape estimation in an idealized
scenario. This study is complemented by adversarial image-based attacks which
make keypoint estimation fail. Together, we evaluate our approach that provides
the first and effective defence against body shape estimation on real-world data.
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Attack [Right ankle Right knee Right hip Left hip Left knee Left ankle Right wrist Right elbow Right shoulder Left shoulder Left elbow Left wrist Head top|Average

1.32 1.4 1.39 1.37 1.38 1.32 1.36 1.41 1.40 1.35 1.28 1.37 1.35 1.37
117 118 1.79 1.94 1.18 1.18 118 117 1.43 1.49 1.15 1.16 119 1.32

Adversarial
Synthetic

Table 1: Shape estimation error on 3DPW with Procrustes analysis with respect
to the ground truth shape. Error in cm. The minimum estimation error is 1.16
cm when we have no manipulation on input keypoints. The goal of each attack is
to induce bigger error in the estimated shape. Hence, higher errors are indication
of a successful attack.

Dataset. We used 3D Poses in the Wild Dataset (3DPW) [62], which includes
60 sequences with 7 actors. To achieve ground truth shape parameter 3, actors
were scanned and SMPL was non-rigidly fit to them to obtain their 3D models
similar to [47,67]. To the best of our knowledge, 3DPW is the only in wild image
dataset which provides the ground truth shape data as well, which makes this
dataset most suitable for our evaluation. For our evaluation, for each actor, we
randomly selected multiple frames from different sequences. All reported results
are averaged across subjects and sampled sequence frames.

Model. We used OpenPose [10] for keypoint detection as it is the most widely
used. OpenPose consists of a two-branch multi-stage CNN, which process images
at multi-scales. Each stage in the first branch predicts the confidence map .S,
and each stage in the second branch predicts the Part Affinity Fields (PAFSs).
For the shape estimation, we used the public code of Smplify [7], which infers a
3D mesh by fitting the SMPL body model to a set of 2D keypoints. To improve
the 3D accuracy, we refined the estimations using silhouette as described in [50].
We used MFGSM (Eq. (5) with @ = 1) in an iterative manner. We evaluated
attacks when setting the £,, norm of the perturbations to ¢ = 0.035 since we
observed that higher values lead to noticeable artifacts in the image. We stop the
iterations if we reach an Euclidean distance (between the original and perturbed
images) of 0.02 in image space for local, and 0.04 for global attacks.

5.1 Synthetic Modification of The Keypoints

First, we studied the importance of each keypoint on the overall body shape
estimation by removing one keypoint at a time—which simulates miss-detections.
The error on shape estimation caused by this attack is reported in the second
row of Table 1. We observe that removing “Hips”, and “Shoulder” keypoints
results in the highest increase of error of 60.78%, and 25.86% whereas “Elbows”
and “Wrists” result in an increase of only 1%.

We also studied the effect of flipping keypoints. The results of this experiment
are shown in Figure 7. Flipping the “Head” with the left or right “Hip” caused
an increase in error of 143.96%. Flipping the “Elbow” and “Knee” was the
second most effective attack causing 67.0% increase of error in average. The
least effective attack was by flipping the left and right knee (less than 0.1%). The
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Fig.7: Shape estimation error on 3DPW with Procrustes analysis. Error in cm
for synthetic and adversarial flipping of the keypoints.
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Fig. 8: The overall shape estimation error induced by synthetic and adversarial
(local) attacks. The darker and bigger circles shows higher error.

average error introduced by removing or flipping of each keypoint is illustrated
in Figure 8 — higher error is larger in size and darker in colour. We can see
that, overall “Hip”, “Shoulder”, and “Head” keypoints play a crucial role in the
quality of the final estimated 3D mesh, and are the most powerful attacks.

5.2 Attacking keypoint Detection by Adversarial Image
Perturbation

To apply modifications to the keypoints, we used our proposed local Mask Iter-
ative Fast Gradient Sign Method (MIFGSM). Figure 9 shows the keypoint con-
fidence map values when removing and adding a keypoint using local and global
attacks with respect to the amount of perturbation added to the image. We can
see that the activation per keypoint decreases after each iteration. Interestingly,
the rate of decrease is slower for global attacks for the same amount of perturba-
tion (0.015 Mean Squared Error (MSE) between perturbed and original image).
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Fig.9: Comparison of local and global attacks for removing and adding a key-
point. The local attack has a higher rate of decrease or increase of activation
compared to the global method for the same amount of perturbation. The blue
bar on the global plots shows the end of the local methods.

Global attacks require a much higher amount of perturbations (0.035 MSE) to
be successful, causing visible artifacts in the image. We observed similar be-
havior when adding “fake” keypoint detections (required to flip two keypoints).
Similarly, the rate of increase in activation was slower for global compared to
local for the same amount of perturbation (0.015 MSE, blue bar in the plot).
From Figure 9 we can also see that shoulders and head are more resistant to
the removal. Furthermore, the attack was the most successful in the creation of
wrists. Since local attacks are more effective, we consider only the local attack
method for further analysis.

5.3 Shape Evasion

In this section, we evaluate the effectiveness of the whole approach for evad-
ing shape estimation and therefore, protecting the users’ privacy. We used our
proposed local method to remove and flip keypoints instead of the synthetic
modification of the keypoints as described in section 5.1. Hence, we call this
attack as a adversarial modification of keypoints.

The error on shape estimation caused by removing of the keypoints using our
local method are reported in the first row of Table 1, we refer to it as adversarial.
We see that attacks on “Right Elbow” and “Right knee” causes 21.55%, and
20.69% increase of error in shape estimation. The least amount of error 10.34%
and 13.79% was produced by removing “Left Elbow” and “Ankles” respectively.
However, “Hip” and “Shoulder” gained higher error in average for left and right
keypoint by 19.0%. On average, the adversarial attack for removing keypoints
caused an even higher error than the synthetic mode (18.1% to 13.79%), showing
the effectiveness of this approach in shape evasion and hence protecting the users’
privacy.

The result for flipping the keypoints is shown in Figure 7 (Adversarial mod-
ification of the keypoint). The highest increase in error was (14.66%) caused
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by flipping the “Head” with “Left Hip”, the second most effective attack was
for flipping the “Right Shoulder” and “Left Knee” keypoints (12.93%). Overall
the most effective attack was on “Knee” and the least effective attack was on
“Wrist” with increase of 7.11%, and 1.72% error on average, respectively.

Adversarial flipping of keypoints achieves an error of 4.19% compared to
adversarial removing attacks (18.1%), which shows they are less effective. In
addition, similar to global attacks, filliping of keypoints causes more changes in
the keypoints, making the detection of these attacks easier.

Person with a higher distance
template (0.04 cm) to SMPL template (2.0 cm)

Fig. 10: The left side shows the original image with the estimated pose, and the
right the output when modified with local and global adversarial perturbations
with corresponding error heatmaps with respect to ground truth shapes (red
means > 2.0 cm). Here we applied local and global attack for removing the
“Right Hip”, and flipping the “Right Hip” and “Head Top”. The global attack
causes the pose estimation to hallucinate multiple people in the image, while our
local attack only changes the selected keypoints. The predicted shape in case of
a global attack is always close to the average template of SMPL causing a lower
error for people with an average shape.

5.4 Qualitative Results

In Figure 10, we present example results obtained for each type of attack. The
global attack causes pose estimation to hallucinate multiple people in the image,
destroying the body signal of the person in the picture. As the predicted poses
in the global attack are not in human body manifold, the optimization step in
SMPL will fail to fit these keypoints resulting in average shape estimates. In the
local attack, we were able to apply small changes in the keypoints. Hence, these
small changes make the shape optimization stage predict shapes that are not
average and also not close to the person in the image. Overall, shape evasion
was most successful when removing the keypoints than flipping them, and when
using the local attacks.
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6 Discussion

As our study of privacy on automatically extracted body shapes and method
for evading shape estimation is the first of its kind, it serves as a starting point
— but naturally needs further investigations to extend on both lines of research
that we have touched on. The following presents a selection of open research
questions.

Targeted vs untargeted shape evasion. While our method for influencing the
keypoints detection is targeted, the overall approach to shape evasion remains
untargeted. Depending on the application scenario, a consistent change or par-
ticular randomization of the change in shape might be desired, which is not
addressed by our work.

Effects of adversarial training. It is well known that adversarial training against
particular image perturbations can lead to some robustness against such attacks
[57,39] and in turn, the attack can again be made to some extent robust against
such defences. Preventing this cat-mouse-game is subject of on-going research
and — while very important — we consider outside of the scope of our first demon-
stration of shape evasion methods.

Scope of the user study. While our user study encompasses essential aspects
of privacy of body shape information, clearly a more detailed understanding
can be helpful to inform the design evasion techniques and privacy-preserving
methodologies that comply with the users’ expectations on handling personal
data. As our study shows that such privacy preferences are personal as well
as application domain specific, there seem ample opportunities to leverage the
emerging methods of high-quality body shape estimation in compliance with
user privacy.

7 Conclusion

Methods for body shape estimation from images of clothed people are getting
more and more accurate. Hence we have asked the timely question to what extent
this raises privacy concerns and if there are ways to evade shape estimation from
images. To better understand the privacy concerns, we conduct a user study that
sheds light on the privacy implication as well as the sensitivity of shape data
in different application scenarios. Overall, we observe a high sensitivity, which
is also dependent on the use case of the data. Based on this understanding,
we follow up with a defence mechanism that can hamper or even prevent body
shape estimation from real-world images. Today’s state of the art body shape
estimation approaches are frequently optimization based and therefore don’t lend
themselves to gradient-based adversarial perturbation. We tackle this problem
by a two-stage approach that first analysis the effect of individual keypoints
on the shape estimate and then proposes adversarial image perturbations to
influence the keypoints. In particular, our novel localized perturbation techniques
constitute an effective technique to evade body shape estimation at negligible
changes to the original image.
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8 Body Shape Privacy in Images: Understanding Privacy
and Preventing Automatic Shape Extraction
Supplementary Material

We are providing here more details about the survey on exploring the users’
personal privacy preferences related to their body shape data. This user study
was split into three sections: 1) Usage of online platforms, 2) 3D shape models,
and 3) application of 3D shape models.

8.1 Usage of online platforms:

Question 1: In this section, we would like to get more information about your
usage of online platforms. On an online public platform, you create an account.
On this platform, you are allowed to post photographs, which anyone can view.
Moreover, you can also interact with other users who shared their photographs
and can comment on or like them.

Imagine you are the person in these photographs, what’s your comfort level
in posting them online?

On a scale of 1-5, rate how comfortable you are sharing such photographs,
where:

1. You are extremely comfortable sharing such data
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Fig. 11: Participants were shown the image with and without 3D shape data and
were asked to indicate their comfort level for sharing this data publicly. One can
see that the majority of participant have a high level of discomfort in sharing
their 3D shape data publicly. This can be seen especially for the female subject
were the comfort distribution towed towards not comfortable when having 3D
shape data along.

2. You are slightly comfortable sharing such data
3. You are somewhat comfortable sharing such data
4. You are not comfortable sharing such data

5. You are extremely uncomfortable sharing such data

Answer: The result of this question is shown in Figure 11. Participants were
shown the figure in the middle. The figure on left shows the users’ comfort level
in sharing each image without the 3D shape data online.

Question2 : Have you ever uploaded your image to online shopping sites,
social media, or fashion blogs?

Answer: Around 68.5% of our participant answered yes to this question.

Question 3: What information could be extracted from this image?
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Fig. 12: List of attributes selected by our participants in Question 3, and Ques-
tion 4

Question 4: What type of information could online shopping platforms (e.g.
Amazon) extract from your purchase history?

Answer: The answer to Question3, and Question 4 are shown in Figure 12.
The list is ordered with the number of votes. We can see that the shape related
attributes were not in the top selected ones, showing a lack of awareness of
participants on recent technologies for shape extraction from a single image.
Some of non-relevant attributes were removed from Question 5.

8.2 3D Shape Models

In this section, we introduced our participant with 3D shape data with the
following text.

Question 5: Recent advances in computer vision make it possible to extract
3D shape data from a single image. In this figure, you can see several examples
of the estimated shape of a person from their image. Please tick one box to rate
how well the depicted 3D shapes reflect the person in this figure.
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The answer was collected in scale 1 to 5 as:

. Untrue of the person in the image

. Somewhat untrue of the person in the image
. Neutral

. Somewhat true of the person in the image

T = W N -

. True of the person in the image

Answer: The answer to this question is depicted in Figure 13. The majority
of our participants think the 3D shapes are true estimations of the person shape.
Question 6: Imagine you are the person in these photographs Figure 11,

what’s your comfort level in posting these photograph along with the 3D shape
data online?
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Fig. 13: Participant were asked to rate how well the depicted 3D shape reflects
the person in the image. Somewhat true and true was selected by majority of
participants.

Answer: The answer to this question is depicted in Figure 11. We can see
that people change their sharing preferences when the 3D shape is available.
This can be especially seen for the female subject.

8.3 Application of 3D Shape Models

3D shape data can be acquired and use in different applications. For example, the
3D scanner at the airport could have exact detailed body model of the person.
Online stores could use their customer’s 3D shape data in their recommendations
systems. These data could be also used to capture your progress when you go to
the gym. Your shape information could be used by the insurance company to get
an estimation of your health, or dating web pages could provide this information
for other users and you to improve their match predictions.

Question 7: what is your comfort level in sharing your 3D shape data with
these applications?

Answer: The answer to this question was presented in Figure 5.b in the
main paper. Participants show a high level of discomfort in sharing their 3D
shape data with multiple applications. In all investigated applications except
fitness, the majority of users express some degree of discomfort.

8.4 Demographic information

We collected three types of demographic data. Which category below includes
your age? What is your gender?, and What is the highest level of school you
have completed or the highest degree you have received?

Answer: The summary of this data is given in Table 2.
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Gender Female Male Other
39 50 1
Age
18 - 20 2 2 0
21 - 29 22 34 1
30 - 39 10 11 0
40 - 49 3 2 0
50 - 59 1 0 0
60 or older 1 1 0
Highest Completed Education
High school degree or equivalent (e.g., GED) 3 4 0
Some college but no degree 1 0 0
Bachelor’s degree 7 11 1
Master’s degree 20 22 0
Graduate degree 1 3 0
Professional degree 2 0 0
Doctorate degree 5 10 0

23

Table 2: Participants demographic. Total N = 90. Majority of our partic-

ipant were in age range 21-29 with Masters degree.
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Image Sharing Preferences

Task Description

In this academic survey we want to understand your comfort level of sharing your images
on the internet

This survey is split into three sections. A more elaborate description is provided at the
beginning of each section.

How much time will it take to complete this survey?

10-20 minutes

Privacy of the data collected in this survey

This survey will be conducted anonymously and the only private information gathered will
be some basic demographic information such as, your gender, age-group and nationality.
All individual responses from the survey will be kept confidential and only aggregate
statistical information will be derived and published. The participation in the survey, and
providing the private information, are both voluntary. Your responses will only be made
available to the researchers when the form is finally submitted.

Contact Information

This survey is being conducted by

Usage of online platforms

In this section we would like to get more information about your usage of online platforms.
On an online public platform, you create an account. On this platform, you are allowed to
post photographs, which anyone can view. Moreover, you can also interact with other users
who shared their photographs and can comment on or like them.

https://docs.google.com/forms/d/1]Ji6watHbyylDW...

3/29/19, 1:34 PM
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1. How often do you use these platforms (or their equivalent)?
Mark only one oval per row.

Never heard Haven't used Once a

of it it Rarely week Regularly

Facebook
Twitter
Reddit
Chictopia
Instagram
LookBook
Flickr
Polyvore
Youtube
Tumblr
Pinterest

Imagine you are the person in these photographs, what's
your comfort level in posting them online?

On a scale of 1-5, rate how comfortable you are sharing such photographs, where:
1 - You are extremely comfortable sharing such photographs

2 - You are slightly comfortable sharing such photographs

3 - You are somewhat comfortable sharing such photographs

4 - You are not comfortable sharing such photographs

5 - You are extremely uncomfortable sharing such photographs
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2.
Mark only one oval.
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3.
Mark only one oval.

Ext | Ext [
comtortale ) 0 D €D CD Grcomfortable

4. Have you ever uploaded your image to online shopping sites, social media, or
fashion blogs?

Mark only one oval.

() Yes
O No
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5. What information could be extracted from this image?

=

Check all that apply.

D Gender

|| pose of the person

Age

Fashion style

Personality traits
circumferences of the bust
3D body shape information
Identity of the person
Nationality

circumferences of the waist
Level of education

Location of the image
Weight

Healthiness
circumferences of the hips
Clothing size such as medium, small, ...

body mass index (BMI)

OOOOddooodooondn
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None of above

6. What type of information could online shopping platforms (e.g. Amazon) extracts
from your purchase history?

Check all that apply.

circumferences of the hips

body mass index (BMI)

Gender

Nationality

3D body shape information

Fashion style

Clothing size such as medium, small, ...
Age

Healthiness of the shopper

Personality traits of the shopper
circumferences of the waist shopper
circumferences of the bust of the shopper
Weight of the shopper

Location of the shopper

Level of education

None of above

3D Shape Models

Recent advances in computer vision make it possible to
extract 3D shape data from a single image. In this figure,
you can see several examples of the estimated shape of
a person from their image.
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Mark Jimmy Anna Emmy Marta Ella Jennifer Rose

7. Please tick one box to rate how well the depicted 3D shapes reflects the person
in the image.

Mark only one oval per row.

Untrue of somewhat True of
the Somewhattrue the
. untrue of the )

person in in the Neutral of the person in person

the peris;n n the image in the

image age image

Mark @) O @) D
Jimmy @, NG @, D)
Anna @) NG @) D
Emmy @) NG @) @,
Marta @) NG @) D
Ella @) NG @) @,
Jennifer @) O @) D
Rose @) o O @) D,

Imagine you are the person in these photographs, what's
your comfort level in posting these photograph along
with the 3D shape data online?

On a scale of 1-5, rate how comfortable you are sharing a photograph along with the 3D
shape data online, where:
1 - You are extremely comfortable sharing such data
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2 - You are slightly comfortable sharing such data

3 - You are somewhat comfortable sharing such data

4 - You are not comfortable sharing such data

5 - You are extremely uncomfortable sharing such data

Mark only one oval.

Ext I Ext [
comtortante ) ) 0 €O O Ghcomortabie

9.
Mark only one oval.
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Application of 3D Shape Models

3D shape data can be acquired and use in different applications. For example, the 3D
scanner at the airport could have exact detail body model of the person. Online stores could
uses their customers 3D shape data in their recommendations systems. These data could
be also used to capture your progress when you go to the gym. Your shape information
could be used by the insurance company to get an estimation of your health, or dating web
pages could provide this information for other users and you to improve their match

predictions.

10. Which of the following shape information would you share with the listed

applications?

Check all that apply.

Health insurance
Body scanners at

airport

Online shopping
platforms

Dating platforms
Shape tracking
applications ( for
sport, fitness, ...)

Clothing size Body part
categories
such as measurement 3D
Nothing Height . such as: around  shape
medium, .
the hip, shoulder, data
small, large,

11. what's your comfort level in sharing your 3D shape data with these applications?
Mark only one oval per row.

Health
insurance

Body scanners
at airport

Online shopping
platforms

Dating platforms
Shape tracking
applications ( for
sport, fitness, ...)

Somewhat
comfortable

Very
uncomfortable

Very

Comfortable comfortable

Uncomfortable

Demographic information
Please fill in the following optional demographic information. All individual responses from
the survey will be kept confidential and only aggregate statistical information will be

published.

90f 10

3/29/19, 1:34 PM



Image Sharing Preferences https://docs.google.com/forms/d/1]Ji6watHbyylDW...

12. Which category below includes your age?
Mark only one oval.

17 or younger
18-20

21-29

30-39

40-49

50-59

60 or older

13. What is your gender?
Mark only one oval.

Female
Male
Other:

14. What is the highest level of school you have completed or the highest degree
you have received?

Mark only one oval.

Less than high school degree

High school degree or equivalent (e.g., GED)
Some college but no degree

Associate degree

Bachelor’s degree

Master’s degree

Graduate degree

Professional degree

Doctorate degree
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