
Lightweight Post-Quantum Key Encapsulation
for 8-bit AVR Microcontrollers

Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan

DCS and SnT, University of Luxembourg
6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg

{hao.cheng,johann.groszschaedl,peter.roenne,peter.ryan}@uni.lu

Abstract. Recent progress in quantum computing has increased inter-
est in the question of how well the existing proposals for post-quantum
cryptosystems are suited to replace RSA and ECC. While some aspects
of this question have already been researched in detail (e.g. the relative
computational cost of pre- and post-quantum algorithms), very little is
known about the RAM footprint of the proposals and what execution
time they can reach when low memory consumption rather than speed
is the main optimization goal. This question is particularly important in
the context of the Internet of Things (IoT) since many IoT devices are
extremely constrained and possess only a few kB of RAM. We aim to
contribute to answering this question by exploring the software design
space of the lattice-based key-encapsulation scheme ThreeBears on an
8-bit AVR microcontroller. More concretely, we provide new techniques
for the optimization of the ring arithmetic of ThreeBears (which is, in
essence, a 3120-bit modular multiplication) to achieve either high speed
or low RAM footprint, and we analyze in detail the trade-offs between
these two metrics. A low-memory implementation of BabyBear that is
secure against Chosen Plaintext Attacks (CPA) needs just about 1.7 kB
RAM, which is significantly below the RAM footprint of other lattice-
based cryptosystems reported in the literature. Yet, the encapsulation
time of this RAM-optimized BabyBear version is below 12.5 million
cycles, which is less than the execution time of scalar multiplication on
Curve25519. The decapsulation is more than four times faster and takes
roughly 3.4 million cycles on an ATmega1284 microcontroller.

Keywords: Post-quantum cryptography · Key encapsulation mecha-
nism · AVR architecture · Efficient implementation · Low RAM footprint

1 Introduction

In 2016, the U.S. National Institute of Standards and Technology (NIST) initi-
ated a process to evaluate and standardize quantum-resistant public-key cryp-
tographic algorithms and published a call for proposals [14]. This call, whose
submission deadline passed at the end of November 2017, covered the complete
spectrum of public-key functionalities: encryption, key agreement, and digital
signatures. A total of 72 candidates were submitted, of which 69 satisfied the

2 H. Cheng et al.

minimum requirements for acceptability and entered the first round of a multi-
year evaluation process. In early 2019, the NIST selected 26 of the submissions
as candidates for the second round; among these are 17 public-key encryption
or key-encapsulation algorithms and nine signature schemes. The 17 algorithms
for encryption (resp. key encapsulation) include nine that are based on certain
hard problems in lattices, seven whose security rests upon classical problems in
coding theory, and one that claims security from the presumed hardness of the
(supersingular) isogeny walk problem on elliptic curves [15]. This second round
focuses on evaluating the candidates’ performance across a variety of systems
and platforms, including “not only big computers and smart phones, but also
devices that have limited processor power” [15].

Lattice-based cryptosystems are considered the most promising candidates
for deployment in constrained devices due to their relatively low computational
cost and reasonably small keys and ciphertexts (resp. signatures). Indeed, the
benchmarking results collected in the course of the pqm4 project1, which uses
a 32-bit ARM Cortex-M4 as target device, show that most of the lattice-based
Key-Encapsulation Mechanisms (KEMs) in the second round of the evaluation
process are faster than ECDH key exchange based on Curve25519, and some
candidates are even notably faster than Curve25519 [10]. However, the results
of pqm4 also indicate that lattice-based cryptosystems generally require a large
amount of run-time memory since most of the benchmarked lattice KEMs have
a RAM footprint of between 5 kB and 30 kB. For comparison, a variable-base
scalar multiplication on Curve25519 can have a RAM footprint of less than 500
bytes [4]. One could argue that the pqm4 implementations have been optimized
to reach high speed rather than low memory consumption, but this argument is
not convincing since even a conventional implementation of Curve25519 (i.e. an
implementation without any specific measures for RAM reduction) still needs
only little more than 500 bytes RAM. Therefore, the existing implementation
results in the literature lead to the conclusion that lattice-based KEMs require
an order of magnitude more RAM than ECDH key exchange.

The high RAM requirements of lattice-based cryptosystems (in relation to
Curve25519) pose a serious problem for the emerging Internet of Things (IoT)
since many IoT devices feature only a few kB of RAM. For example, a typical
wireless sensor node like the MICAz mote [3] is equipped with an 8-bit micro-
controller (e.g. ATmega128L) and comes with only 4 kB internal SRAM. These
4 kB are easily sufficient for Curve25519 (since there would still be 7/8 of the
RAM available for system and application software), but not for lattice-based
KEMs. Thus, there is a clear need to research how lattice-based cryptosystems
can be optimized to reduce their memory consumption and what performance
such low-memory implementations can reach. The present paper addresses this
research need and introduces various software optimization techniques for the
ThreeBears KEM [8], a lattice-based cryptosystem that was selected for the
second round of NIST’s standardization project. The security of ThreeBears
is based on a special version of the Learning With Errors (LWE) problem, the

1 See https://www.github.com/mupq/pqm4.

Lightweight Post-Quantum Key Encapsulation for 8-bit Microcontrollers 3

so-called Integer Module Learning with Errors (I-MLWE) problem [5]. Three-
Bears is unique among the lattice-based second-round candidates since it uses
an integer ring instead of a polynomial ring as algebraic structure. Hence, the
major operation of ThreeBears is integer arithmetic (namely multiplication
modulo a 3120-bit prime) and not polynomial arithmetic.

The conventional way to speed up the polynomial multiplication that forms
part of lattice-based cryptosystems like classical NTRU or NTRU Prime is to
use a multiplication technique with sub-quadratic complexity, e.g. Karatsuba’s
method [11] or the so-called Toom-Cook algorithm. However, the performance
gain due to these techniques comes at the expense of a massive increase of the
RAM requirements. For integer multiplication, on the other hand, there exists
a highly effective approach for performance optimization that does not increase
the memory footprint, namely the so-called hybrid multiplication method from
CHES 2004 [6] or one of its variants like the Reverse Product Scanning (RPS)
method [13]. In essence, the hybrid technique can be viewed as a combination
of classical operand scanning and product scanning with the goal to reduce the
number of load instructions by processing several bytes of the two operands in
each iteration of the inner loop. Even though the hybrid technique can also be
applied to polynomial multiplication, it is, in general, less effective because the
bit-length of the polynomial coefficients of most lattice-based cryptosystems is
not a multiple of eight.

Contributions. This paper analyzes the performance of ThreeBears on an
8-bit AVR microcontroller and studies its flexibility to achieve different trade-
offs between execution time and RAM footprint. Furthermore, we describe (to
the best of our knowledge) the first highly-optimized software implementations
of BabyBear (an instance of ThreeBears with parameters to reach NIST’s
security category 2) for the AVR platform. We developed four implementations
of BabyBear, two of which are optimized for low RAM consumption, and the
other two for fast execution times. Our two low-RAM BabyBear versions are
the most memory-efficient software implementations of a NIST second-round
candidate ever reported in the literature.

Our work is based on the optimized C code contained in the ThreeBears
submission package [8], which adopts a “reduced-radix” representation for the
ring elements, i.e. the number of bits per limb is less than the word-size of the
target architecture. On a 32-bit platform, a 3120-bit integer can be stored in an
array of 120 limbs, each consisting of 26 bits. However, our AVR software uses
a radix of 232 (i.e. 32 bits of the operands are processed at a time) since this
representation enables the RPS method to reach peak performance and it also
reduces the RAM footprint. We present two optimizations for the performance-
critical Multiply-ACcumulate (MAC) operation of ThreeBears; one aims to
minimize the RAM requirements, while the goal of the second is to maximize
performance. Our low-memory implementation of the MAC combines one level
of Karatsuba with the RPS method [13] to accelerate the so-called tripleMAC
operation of the optimized C source code from [8], which is (relatively) light in

4 H. Cheng et al.

terms of stack memory. On the other hand, the speed-optimized MAC consists
of three recursive levels of Karatsuba multiplication and uses the RPS method
underneath. We implemented both MAC variants in AVR Assembly language to
ensure they have constant execution time and can resist timing attacks.

As already mentioned, our software contains four different implementations
of the ThreeBears family: two versions of CCA-secure BabyBear, and two
versions of CPA-secure BabyBearEphem. For both BabyBear and Baby-
BearEphem, we developed both a Memory-Efficient (ME) and a High-Speed
(HS) implementation, which internally use the corresponding MAC variant. We
abbreviate these four versions as ME-BBear, ME-BBear-Eph, HS-BBear, and
HS-BBear-Eph. Our results show that ThreeBears provides the flexibility to
optimize for low memory footprint and still achieves very good execution times
compared to the other second-round candidates. In particular, the CCA-secure
BabyBear can be optimized to run with only 2.4 kB RAM on AVR, and the
CPA-secure version requires even less memory, namely just 1.7 kB.

2 Preliminaries

2.1 8-bit AVR Microcontrollers

8-bit AVR microcontrollers continue to be widely used in the embedded realm
(e.g. smart cards, wireless sensor nodes). The AVR architecture is based on the
modified Harvard memory model and follows the RISC philosophy. It features
32 general-purpose working registers (i.e. R0 to R31) of 8-bit width, which are
directly connected to the Arithmetic Logic Unit (ALU). The current revision
of the AVR instruction set supports 129 instructions in total, and each of them
has fixed latency. Examples of instructions that are frequently used in our soft-
ware are addition and subtraction (ADD/ADC and SUB/SBC); they take a single
cycle. On the other hand, the multiplication (MUL) and also the load and store
(LD/ST) instructions are more expensive since they have a latency of two clock
cycles. The specific AVR microcontroller on which we simulated the execution
time of our software is the ATmega1284; it features 16 kB SRAM and 128 kB
flash memory for storing program code.

2.2 Overview of ThreeBears

ThreeBears has three parameter sets called BabyBear, MamaBear, and
PapaBear, matching NIST security categories 2, 4, and 5, respectively. Each
parameter set comes with two instances, one providing CPA security and the
other CCA security. Taking BabyBear as example, the CPA-secure instance is
named BabyBearEphem (with the meaning of ephemeral BabyBear), while
the CCA-secure one is simply called BabyBear. In the following, we only give
a short summary of the CCA-secure instance of ThreeBears. In contrast to
encryption schemes with CCA-security, CPA-secure ones, roughly speaking, do
not repeat and verify the key generation and encryption (i.e. encapsulation) as
part of the decryption (i.e. decapsulation) procedure, see [8] for details.

Lightweight Post-Quantum Key Encapsulation for 8-bit Microcontrollers 5

Notation and Parameters. ThreeBears operates in the field Z/N , where
the prime modulus N = 23120 − 21560 − 1 is a so-called “golden-ratio” Solinas
trinomial prime [7]. N is commonly written as N = φ(x) = xD − xD/2 − 1. The
addition and multiplication (+, ∗) in Z/N will be explained in Subsect. 3.1. An
additional parameter d determines the the module dimension; this dimension is
2 for BabyBear, 3 for MamaBear and 4 for PapaBear, respectively.

Key Generation. To generate a key pair for ThreeBears, the following op-
erations have to be performed:

1. Generate a uniform and random string sk with a fixed length.
2. Generate two noise vectors (a0, . . . , ad−1) and (b0, . . . , bd−1), where ai, bi ∈

Z/N is sampled from a noise sampler using sk.
3. Compute r = Hash(sk).
4. Generate a d × d matrix M , where each element Mi,j ∈ Z/N is sampled

from a uniform sampler using r.
5. Obtain vector z = (z0, . . . , zd−1) by computing each zi = bi + Σd−1

j=0Mi,j ∗
aj mod N

6. Output sk as private key and (r, z) as public key.

Encapsulation. The encapsulation operation gets a public key (r, z) as input
and produces a ciphertext and shared secret as output:

1. Generate a uniform and random string seed with a fixed-length.
2. Generate two noise vectors (â0, . . . , âd−1), (b̂0, . . . , b̂d−1) and a noise c, where

âi, b̂i, c ∈ Z/N is sampled from noise sampler by given r and seed.
3. Generate a d × d matrix M , where each element Mi,j ∈ Z/N is sampled

from uniform sampler by given r.
4. Obtain vector y = (y0, . . . , yd−1) by computing each yi = b̂i + Σd−1

j=0Mj,i ∗
âj mod N , and compute x = c+Σd−1

j=0 zj ∗ âj mod N .
5. Use Melas FEC encoder to encode seed, and use this encoded output together

with x to extract a fixed-length string f .
6. Compute ss = Hash(r, seed).
7. Output ss as shared secret and (f,y) as ciphertext.

Decapsulation. The decapsulation gets a private key sk and ciphertext (f,y)
as input and produces a shared secret as output:

1. Generate a noise vector (a0, . . . , ad−1), where ai ∈ Z/N is sampled from a
noise sampler by given sk.

2. Compute x = Σd−1
j=0 yj ∗ aj mod N .

3. Derive a string from f together with x, and use Melas FEC decoder to decode
this string to obtain the string seed.

4. Generate the public key (r′, z′) through Key Generation by given sk.
5. Repeat Encapsulation to get ss′ and (f ′,y′) by using the obtained seed and

key pair (sk, (r′, z′)).

6 H. Cheng et al.

6. Check whether (f ′,y′) equals to (f,y); if they are equal then output ss′ as
shared secret ; if not then output Hash(sk, f,y) as shared secret.

The three operations described above use a few auxiliary functions such as
samplers (noise sampler and uniform sampler), hash functions, and a function
for the correction of errors. Both the samplers and hash functions are based on
cSHAKE256 [12], which uses the Keccak permutation [1] at the lowest layer. In
addition, ThreeBears adopts Melas BCH code for Forward Error Correction
(FEC) since it is very fast, has low RAM consumption and small code size, and
can also be easily implemented to have constant execution time.

We determined the execution time of several implementations contained in
the ThreeBears NIST submission package on an AVR microcontroller. Like
is the case with other lattice-based cryptosystems, the arithmetic computations
of ThreeBears determine the memory footprint and have a big impact on the
overall execution time. Hence, our work primarily focuses on the optimization
of the costly MAC operation of the form r = r + a ∗ b mod N . Concerning the
auxiliary functions, we were able to significantly improve their performance (in
relation to the C code of the submission package) thanks to a highly-optimized
AVR assembler implementation of the permutation of Keccak2. Further details
about the auxiliary functions are outside of the scope of this work; we refer the
reader to the specification of ThreeBears [8].

3 Optimizations for the MAC Operation

The multiply-accumulate (MAC) operation of ThreeBears, in particular the
3120-bit multiplication that is part of it, is very costly on 8-bit microcontrollers
and requires special attention. This section deals with optimization techniques
for the MAC operation on the AVR platform. As already stated in Sect. 1, we
follow two strategies to optimize the MAC, one whose goal is to minimize the
RAM footprint, whereas the other aims to maximize performance. The result is
a memory-optimized MAC and a speed-optimized MAC, which are described in
Subsect. 3.3 and 3.4, respectively.

3.1 The MAC Operation of ThreeBears

ThreeBears defines its field operations (+, ∗) as

a+ b := a+ b mod N and a ∗ b := a · b · x−D/2 mod N

where + and · are the conventional integer addition and multiplication, respec-
tively. Note that a so-called clarifier x−D/2 is multiplied with the factors in the
field multiplication, which serves to reduce the distortion of the noise. As shown
in [7], the Solinas prime N enables very fast Karatsuba multiplication [11]. We
can write the field multiplication in the following way, where λ = xD/2 and the
subscripts H and L are used to denote the higher/lower half of an integer:

2 See https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600/AVR8.

Lightweight Post-Quantum Key Encapsulation for 8-bit Microcontrollers 7

z = a ∗ b = a · b · λ−1 = (aL + aHλ)(bL + bHλ) · λ−1

= aLbLλ
−1 + (aLbH + aHbL) + aHbHλ

= aLbL(λ− 1) + (aLbH + aHbL) + aHbHλ

= (aLbH + aHbL − aLbL) + (aLbL + aHbH)λ

= (aHbH − (aL − aH)(bL − bH)) + (aLbL + aHbH)λ mod N (1)

Compared to a conventional Karatsuba multiplication, which requires three
half-size multiplications and six additions/subtractions, the Karatsuba method
for multiplication in Z/N saves one addition or subtraction. Consequently, the
MAC operation can be performed as specified by Eq. (2) and Eq. (3):

r = r + a ∗ b mod N

= (rL+aHbH − (aL−aH)(bL− bH)) + (rH +aLbL+aHbH)λ mod N (2)

= (rL+aHbL−aL(bL− bH)) + (rH + (aL+aH)bH +aL(bL− bH))λ mod N (3)

3.2 Full-Radix Representation for Field Elements

The NIST submission package of ThreeBears consists of different implemen-
tations, including a reference implementation, optimized implementations, and
additional implementations (e.g. a low-memory implementation). As mentioned
in Sect. 1, they all use a reduced-radix representation for the 3120-bit integers
(e.g. on a 32-bit platform, each limb is 26 bits long, and an element of the field
consists of 120 limbs). Since this representation implies that there are six free
bits in a 32-bit word, it is possible to store the carry (or borrow) bits that are
generated during a field operation instead of immediately propagating them to
the next-higher word, which reduces dependencies and enables instruction-level
parallelism. Modern super-scalar processors can execute several instructions in
parallel and, in this way, improve the running time of ThreeBears.

Our implementations of BabyBear for AVR use a full-radix representation
for the field elements for a number of reasons. First, small 8-bit microcontrollers
have a single-issue pipeline and can not execute instructions in parallel, even
when there are no dependencies among instructions. Furthermore, leaving six
bits of “headroom” in a 32-bit word increases the number of limbs (in relation
to the full-radix case) and, hence, the number of (32× 32)-bit multiplications to
be carried out. This is a bigger problem on AVR than on high-end processors
where multiplications are a lot faster. Finally, the reduced-radix representation
requires more space for a field-element (i.e. larger memory footprint) and more
load/store instructions. In our full-radix representation, an element of the field
consists of 98 words of a length of 32 bits and consumes 98 × 4 = 392 bytes in
RAM, while the original representation requires 120 × 4 = 480 bytes. The full-
radix representation with 32-bit words has also arithmetic advantages since (as
mentioned in Sect. 1) it allows one to accelerate the MAC operation using the
RPS method [13]. Thus, we fix the number representation radix to 232, despite
the fact that we are working on an 8-bit microcontroller.

8 H. Cheng et al.

standard L H C 0

aligned L 0 H C

0 1568 3136

Fig. 1. Standard and aligned form of a field element (AVR uses little-endian)

We define two forms of storage for a full-radix field element: standard and
aligned. Both forms are visually sketched in Fig. 1, where “L” and “H” stands
respectively for the lower and higher 1560 bits of a 3120-bit field element. The
standard form is basically the straightforward way of storing a multi-precision
integer. Since a 3120-bit integer occupies 98 32-bit words, there are 16 unused
bits (i.e. two empty bytes) in the most significant word. In our optimized MAC
operations, the result is not always strictly in the range [0, N) but can also be
in [0, 2N), which means the second most significant byte is either 0 or 1. We call
this byte “carry byte” and mark it with a “C” in Fig. 1. Furthermore, we use
“0” to indicate the most significant byte because it is 0 all the time.

The reason why we convert a standard integer into aligned form is because
it allows us to perform the Karatsuba multiplication more efficiently. From an
implementer’s viewpoint, the standard form is suboptimal for Karatsuba since
it does not place the lower (“L”) and upper (“H”) 1560 bits into the lower and
upper half of the operand space (see Fig. 1). Concretely, the lowest byte of the
upper 1560 bits is located at the most significant byte of the lower half in the
space, which introduces some extra effort for alignment and addressing. The
aligned form splits the lower and upper 1560 bits in such a way that they are
ideally located for Karatsuba multiplication.

3.3 Memory-Optimized MAC Operation

The NIST submission package of ThreeBears includes a low-memory imple-
mentation for each instance, which aims to minimize stack consumption. These
low-memory variants are based on a special memory-efficient MAC operation
that uses one level of Karatsuba’s technique [11], which follows a modification
of Eq. (3), namely Eq. (4) shown below:

(rL +aHbL− 2aL(bL− bH)) + (rH + (aL +aH)bH)λ+aL(bL− bH)λ2 mod N (4)

This MAC implements the multiplications using the product-scanning method
and operates on reduced-radix words. Our memory-optimized MAC operation
was developed on basis of this original low-memory MAC, but performs all its
computations on aligned full-radix words (after some alignment operations).

Algorithm 1 shows our low-RAM one-level Karatsuba MAC, which consists
of two major parts: a main MAC loop interleaved with the modular reduction
(from line 1 to 26) and a final reduction modulo N (from line 27 to 43). The

Lightweight Post-Quantum Key Encapsulation for 8-bit Microcontrollers 9

Algorithm 1 Memory-optimized MAC operation

Input: Aligned s-word integers A = (As−1, . . . , A1, A0), B = (Bs−1, . . . , B1, B0), and
R = (Rs−1, . . . , R1, R0), each word contains ω bits; β is a parameter of alignment

Output: Aligned s-word product R = R+A ·B · x−D/2 mod N = (Rs−1, . . . , R1, R0)

1: Z0 ← 0, Z1 ← 0
2: l← s/2
3: for i from 0 to l − 1 by 1 do
4: Z2 ← 0
5: k ← i+ 1
6: for j from 0 to i by 1 do
7: k ← k − 1
8: Z0 ← Z0 +Aj+l ·Bk
9: Z1 ← Z1 + (Aj +Aj+l) ·Bk+l

10: Z2 ← Z2 +Aj · (Bk −Bk+l)
11: end for
12: Z0 ← Z0 − 2 · Z2

13: k ← l
14: for j from i+ 1 to l − 1 by 1 do
15: k ← k − 1
16: Z1 ← Z1 + 2β ·Aj+l ·Bk
17: Z2 ← Z2 + 2β · (Aj +Aj+l) ·Bk+l
18: Z0 ← Z0 + 2β ·Aj · (Bk −Bk+l)
19: end for
20: Z0 ← Z0 + Z2 +Ri
21: Z1 ← Z1 + Z2 +Ri+l
22: Ri ← Z0 mod 2ω

23: Z0 ← Z0/2
ω

24: Ri+l ← Z1 mod 2ω

25: Z1 ← Z1/2
ω

26: end for
27: Z0 ← 2β · Z0 +Rl−1/2

ω−β

28: Z1 ← 2β · Z1 +Rs−1/2
ω−β

29: Rl−1 ← Rl−1 mod 2ω−β

30: Rs−1 ← Rs−1 mod 2ω−β

31: Z0 ← Z0 + Z1

32: for i from 0 to l − 1 by 1 do
33: Z1 ← Z1 +Ri
34: Ri ← Z1 mod 2ω

35: Z1 ← Z1/2
ω

36: end for
37: Z0 ← 2β · Z0 +Rl−1/2

ω−β

38: Rl−1 ← Rl−1 mod 2ω−β

39: for i from l to s− 1 by 1 do
40: Z0 ← Z0 +Ri
41: Ri ← Z0 mod 2ω

42: Z0 ← Z0/2
ω

43: end for
44: return (Rs−1, . . . , R1, R0)

designer of ThreeBears coined the term “tripleMAC” to refer to the three
word-level MACs in the inner loops (line 8 to 10 and 16 to 19). Certainly, this
tripleMAC is the most frequent computation carried out by Algorithm 1 and
dominates the overall execution time. In order to reach peak performance on
AVR, we replace the conventional product-scanning technique by an optimized
variant of the hybrid multiplication method [6], namely the so-called Reverse
Product-Scanning (RPS) method [13], which processes four bytes (i.e. 32 bits)
of the operands per loop-iteration. In addition, we split each of the inner loops
containing a tripleMAC up into three separate loops, and each of these three
loops computes one word-level MAC. Due to the relatively small register space
of AVR, it is not possible to keep all three accumulators (i.e. Z0, Z1, and Z2) in
registers,which means executing three word-level MACs in the same inner loop
would require a large number of LD and ST instructions to load and store the
accumulators in each iteration. Thanks to our modification, an accumulator has
to be loaded/stored only before/after the whole inner loop.

The three inputs and the output of Algorithm 1 are aligned integers, where
s is 98 and ω is 32. The parameter β specifies the shift-distance (in bits) when
converting an ordinary integer to aligned form (β = 8 in our case). Each of the
three accumulators Z0, Z1, and Z2 in Algorithm 1 is 80 bits long and occupies

10 H. Cheng et al.

Z0 Z1 Z2 Z0

λ0 λ λ2 λ3 λ4

Fig. 2. Three accumulators for coefficients of λ0 = 1, λ, and λ2 of a product R

10 registers. Figure 2 illustrates the relation between the accumulators and the
coefficients of λ0, λ, and λ2 in an aligned output R. Referring to Eq. (4), we
suppose each coefficient can be 3120 bits long, but Z0, Z1, and Z2 accumulate
only the lower 1560 bits of the coefficients of λ0, λ, and λ2, respectively, in the
first tripleMAC (line 8 to 10). After the first inner loop, double of Z2 must be
subtracted from Z0 (line 12), which corresponds to the operation of the form
aHbL − 2aL(bL − bH) in Eq. (4). The second inner loop (beginning at line 14)
computes the higher half of each coefficient, but this time the word-products
are added to different accumulators compared to the first tripleMAC (e.g. the
64-bit word-products of the form Aj+l · Bk are added to Z1 instead of Z0). In
the second tripleMAC, the factor 2β needs to be considered in order to ensure
proper alignment. The third word-level MAC (at line 18) can be regarded as
computing (the lower half of) the coefficient of λ3. Normally, we should use an
additional accumulator Z3 for this third MAC, but it is more efficient to re-use
Z0. This is possible since, after the second inner loop, we would normally have
to compute Z1 ← Z1 − 2 · Z3, a similar operation as at line 12. But because

λ3 = λ2 · λ = (λ+ 1) · λ = λ2 + λ = (λ+ 1) + λ = 2λ+ 1 mod N,

we also have to compute Z0 ← Z0 + Z3 and Z1 ← Z1 + 2 · Z3. Combining these
two computations with Z1 ← Z1 − 2 · Z3 implies that Z1 can simply keep its
present value and only Z0 accumulates the value of Z3. Thus, Algorithm 1 does
not compute Z1 ← Z1 − 2 · Z3, but instead directly accumulates the sum of the
word-products Aj · (Bk − Bk+l) into Z0 (which also saves a few load and store
instructions). This “shortcut” is indicated in Fig. 2 with a dashed arrow from
Z0 to the coefficient of λ3. Lines 20 to 25 add the lower 32-bit words of Z0 and
Z1 to the corresponding words of the result R and right-shift Z0 and Z1. The
part from line 27 to 30 brings the output of the MAC into a properly aligned
form. Thereafter (line 31 to 43), a modulo-N reduction (based on the relation
λ2 ≡ λ + 1 mod N) along with a conversion to 32-bit words is performed. The
output of Algorithm 1 is an aligned integer in the range of [0, 2N).

We implemented Algorithm 1 completely in AVR Assembly language. Even
though each accumulator Zi consists of 80 bits (ten bytes), we only load and
store nine bytes of Zi in each inner loop. A simple analysis shows that that the
accumulator values in the first inner loop can never exceed 272, which allows us
to only load and store the nine least-significant bytes. In the second tripleMAC
loop, each word-product is multiplied by 2β (i.e. shifted left by eight bits) and
so it is not necessary to load/store the least-significant accumulator byte.

Lightweight Post-Quantum Key Encapsulation for 8-bit Microcontrollers 11

Algorithm 2 Speed-optimized MAC operation

Input: Aligned field elements A = (AH , AL), B = (BH , BL) and R = (RH , RL)
Output: Aligned product R = R+A ·B · x−D/2 mod N = (RH , RL)

1: (ZH , ZL)← (0, 0), (TH , TL)← (0, 0)
2: TL ← |AL −AH |
3: if AL − AH < 0 then sa ← 1; else

sa ← 0
4: TH ← |BL −BH |
5: if BL − BH < 0 then sb ← 1; else

sb ← 0
6: (ZH , ZL)← TL · TH · (−1)1−(sa⊕sb)

7: (RH , RL)← (RH , RL) + (ZH , ZL)
8: TL ← AH , TH ← BH
9: (ZH , ZL)← TL · TH

10: RH ← RH + ZH
11: TL ← ZH + ZL
12: RL ← RL + TL
13: RH ← RH + TL
14: TL ← AL, TH ← BL
15: (ZH , ZL)← TL · TH
16: RH ← RH + ZL
17: RL ← RL + ZH
18: RH ← RH + ZH
19: (RH , RL)← (RH , RL) mod N
20: return (RH , RL)

3.4 Speed-Optimized MAC Operation

The MAC operations of the implementations in the NIST submission package
of ThreeBears are not suitable to reach high speed on AVR. Therefore, we
developed our speed-optimized MAC operation from scratch and implemented
it according to a variant of Eq. (2), namely Eq. (5) specified below. We divide
the three full-size 3120-bit products (e.g. aLbL) of Eq. (2) into two halves, and
use l for representing aLbL, m for −(aL − aH)(bL − bH) and h for aHbH :

r = (rL + h+m) + (rH + l + h)λ mod N

= (rL + (hL + hHλ) + (mL +mHλ)) + (rH + (lL + lHλ) + (hL + hHλ))λ

= (rL + hL +mL) + (rH + lL + hL +mH + hH)λ+ (lH + hH)λ2

= (rL +mL + hL + hH + lH) + (rH +mH + hH + lL + hL + hH + lH)λ (5)

The underlined parts in Eq. (5) are common parts of the coefficients of λ0 and
λ. Algorithm 2 specifies our speed-optimized MAC, which operates on half-size
(i.e. 1560-bit) parts of the operands A, B and R. We omitted the details of the
final step (line 19) in Algorithm 2, i.e. the modulo-N reduction, because it is
very similar to lines 27 to 43 in Algorithm 1. Compared with Algorithm 1, the
speed-efficient MAC operation is designed in a more straightforward way since
it computes each entire half-size multiplication separately to obtain a full-size
intermediate product (line 6, 9, and 15). However, it consumes more memory to
store the intermediate products (e.g. ZH , ZL and TH , TL).

We still take advantage of RPS technique to speed up the inner-loop opera-
tion, but combine it Karatsuba’s method. Our experiments with different levels
of Karatsuba multiplication showed that the 2-level Karatsuba approach with
the RPS technique underneath (i.e. 2-level KRPS) yields the best performance
for a multiplication of 1560-bit operands. Consequently, we execute three levels
of Karatsuba (i.e. 3-level KRPS) altogether for the MAC operation. Each level
uses the so-called subtractive Karatsuba algorithm described in [9] to achieve

12 H. Cheng et al.

Table 1. Execution time (in clock cycles) of our AVR implementations

Implementation Security MAC KeyGen Encaps Decaps

ME-BBear CCA-secure 1,033,728 8,746,418 12,289,744 18,578,335

ME-BBear-Eph CPA-secure 1,033,728 8,746,418 12,435,165 3,444,154

HS-BBear CCA-secure 604,703 6,123,527 7,901,873 12,476,447

HS-BBear-Eph CPA-secure 604,703 6,123,527 8,047,835 2,586,202

Table 2. RAM usage and code size (both in bytes) of our AVR implementations

MAC KeyGen Encaps Decaps Total
Implementation

RAM Size RAM Size RAM Size RAM Size RAM Size

ME-BBear 82 2,760 1,715 6,432 1,735 7,554 2,368 10,110 2,368 12,264

ME-BBear-Eph 82 2,760 1,715 6,432 1,735 7,640 1,731 8,270 1,735 10,998

HS-BBear 934 3,332 2,733 7,000 2,752 8,140 4,559 10,684 4,559 11,568

HS-BBear-Eph 934 3,332 2,733 7,000 2,752 8,226 2,356 8,846 2,752 10,296

fast and constant execution time. All half-size multiplications performed at the
second and third level use space that was initially occupied by input operands
to store intermediate values, i.e. we do not allocate additional RAM inside the
half-size multiplications. This is also the reason for the two operations at line
8 and 14, where we move the operands to TH and TL before the multiplication
so that we do not modify the inputs A and B.

4 Performance Evaluation and Comparison

Except of the MAC operations, all components of our ME and HS software are
taken from the low-memory and speed-optimized implementation contained in
the NIST package of ThreeBears (with minor optimizations). Our software
consists of a mix of C and AVR assembly language, i.e. the performance-critical
MAC operation and Keccak permutation are written in AVR assembly, and all
other functions in C. Atmel Studio v7.0, our development environment, comes
with the 8-bit AVR GNU toolchain including avr-gcc version 5.4.0. We used the
cycle-accurate instruction set simulator of Atmel Studio to precisely determine
the execution times. The source codes were compiled with optimization option
-O2 using the ATmega1284 microcontroller as target device.

Table 1 shows the execution time of a MAC operation, key generation, en-
capsulation, and decapsulation of our software. A speed-optimized MAC takes
only 605 k clock cycles, while the memory-optimized version requires 70% more
cycles. The speed difference between these two types of MAC directly impacts
the overall running time of ME-BBear(-Eph) versus HS-BBear(-Eph), because
there are several MACs in KeyGen, Encaps and Decaps. Taking HS-BBear as
example, KeyGen, Encaps, and Decaps needs 6.12 M, 7.90 M, and 12.48 M clock
cycles, respectively. Their ME counterparts are roughly 1.5 times slower.

Table 2 specifies both the memory footprint and code size of the four basic
operations (MAC, KeyGen, Encaps, and Decaps). The speed-optimized MAC

Lightweight Post-Quantum Key Encapsulation for 8-bit Microcontrollers 13

Table 3. Comparison of our implementation with other key-establishment schemes
(all of which target 128-bit security) on the 8-bit AVR platform (the execution times
of Encaps and Decaps are in clock cycles; RAM and code size are in bytes).

Implementation Algorithm Encaps Decaps RAM Size

This work (ME-CCA) ThreeBears 12,289,744 18,578,335 2,368 12,264

This work (ME-CPA) ThreeBears 12,435,165 3,444,154 1,735 10,998

This work (HS-CCA) ThreeBears 7,901,873 12,476,447 4,559 11,568

This work (HS-CPA) ThreeBears 8,047,835 2,586,202 2,752 10,296

Cheng et al [2] NTRU Prime 8,160,665 15,602,748 n/a 11,478

Düll et al [4] (ME) Curve25519 14,146,844 14,146,844 510 9,912

Düll et al [4] (HS) Curve25519 13,900,397 13,900,397 494 17,710

consumes 934 bytes of memory, while the memory-optimized MAC requires as
little as 82 bytes, which is just 9% of the former. Due to the memory-optimized
MAC operation and full-radix representation of field elements, ME-BBear has
a RAM footprint of 1.7 kB for each KeyGen and Encaps, while Decaps is more
memory-demanding and needs 2.4 kB RAM. However, ME-BBear-Eph requires
only 1.7 kB of RAM altogether. On the other hand, the HS implementations
need over 1.5 times more RAM than their ME counterparts. In terms of code
size, each of the four implementations requires roughly 11 kB.

Table 3 compares implementations of both pre and post-quantum schemes
(targeting 128-bit security) on 8-bit AVR microcontrollers. Compared to the
CCA-secure version of the second-round NIST candidate NTRU Prime [2], HS-
BBear is slightly faster for both Encaps and Decpas. On the other hand, when
compared with the optimized implementation of Curve25519 in [4], the Encaps
operation of each BabyBear variant in Table 3 is faster than a variable-base
scalar multiplication, while the Decaps of ME-BBear is slower, but that of the
HS variant still a bit faster. Notably, the Decaps operation of our CPA-secure
implementations is respectively 4.0 times (ME) and 5.4 times (HS) faster than
Curve25519.

One of the most significant advantages of the ThreeBears cryptosystem
is its relatively low RAM consumption, which is important for deployment on
constrained devices. Table 4 compares the RAM footprint of implementations
of ThreeBears and a few other NIST candidates on microcontrollers. Due to
the very small number of state-of-the-art implementations of NIST candidates
for the 8-bit AVR platform, we include in Table 4 also some recent results from
the pqm4 library, which targets 32-bit ARM Cortex-M4. In addition, we list the
results of the original low-RAM implementations of BabyBear (for both the
CCA and CPA variant) from the NIST package. Our memory-optimized Baby-
Bear is the most RAM-efficient implementation among all CCA-secure PQC
schemes and needs 5% less RAM than the second most RAM-efficient scheme
Kyber. Furthermore, ME-BBear-Eph requires the least amount of RAM of all
(CPA-secure) second-round NIST PQC candidates, and improves the original
low-memory implementation of the designer by roughly 26.2%.

14 H. Cheng et al.

Table 4. Comparison of RAM consumption (in bytes) of NIST PQC implementations
(all of which target NIST security category 1 or 2) on 8-bit AVR and on 32-bit ARM
Cortex-M4 microcontrollers.

Implementation Algorithm Platform KeyGen Encaps Decaps

CCA-secure schemes

This work (ME) ThreeBears AVR 1,715 1,735 2,368

Hamburg [8] ThreeBears Cortex-M4 2,288 2,352 3,024

pqm4 [10] ThreeBears Cortex-M4 3,076 2,964 5,092

pqm4 [10] NewHope Cortex-M4 3,876 5,044 5,044

pqm4 [10] Round5 Cortex-M4 4,148 4,596 5,220

pqm4 [10] Kyber Cortex-M4 2,388 2,476 2,492

pqm4 [10] NTRU Cortex-M4 11,848 6,864 5,144

pqm4 [10] Saber Cortex-M4 9,652 11,388 12,132

CPA-secure schemes

This work (ME) ThreeBears AVR 1,715 1,735 1,731

Hamburg [8] ThreeBears Cortex-M4 2,288 2,352 2,080

pqm4 [10] ThreeBears Cortex-M4 3,076 2,980 2,420

pqm4 [10] NewHope Cortex-M4 3,836 4,940 3,200

pqm4 [10] Round5 Cortex-M4 4,052 4,500 2,308

5 Conclusions

We presented the first highly-optimized Assembler implementation of Three-
Bears for the 8-bit AVR architecture. Our simulation results show that, even
with a fixed parameter set like BabyBear, many trade-offs between execution
time and RAM consumption are possible. The memory-optimized CPA-secure
version of BabyBear requires only slightly more than 1.7 kB RAM, which sets
a new record for memory efficiency among all known software implementations
of second-round candidates. Due to this low memory footprint, BabyBear fits
easily into the SRAM of 8-bit AVR ATmega microcontrollers and will even run
on severely constrained devices like an ATmega128L with 4 kB SRAM. While
a RAM footprint of 1.7 kB is still clearly above the 500 B of Curve25519, the
execution times are in favor of BabyBear since a CPA-secure decapsulation
is four times faster than a scalar multiplication. ThreeBears is also very well
suited to be part of a hybrid pre/post-quantum key agreement protocol since
the multiple-precision integer arithmetic can (potentially) be shared with the
low-level field arithmetic of Curve25519, thereby reducing the overall code size
when implemented in software or the total silicon area in the case of hardware
implementation. For all these reasons, ThreeBears is an excellent candidate
for a post-quantum cryptosystem to secure the IoT.

Acknowledgements. This work was supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No. 779391
(FutureTPM).

Lightweight Post-Quantum Key Encapsulation for 8-bit Microcontrollers 15

References

1. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak. In T. Johansson
and P. Q. Nguyen, editors, Advances in Cryptology — EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 313–314. Springer Verlag, 2013.

2. H. Cheng, D. Dinu, J. Großschädl, P. B. Rønne, and P. Y. A. Ryan. A lightweight
implementation of NTRU Prime for the post-quantum internet of things. In
M. Laurent and T. Giannetsos, editors, Information Security Theory and Prac-
tice — WISTP 2019, volume 12024 of Lecture Notes in Computer Science, pages
103–119. Springer Verlag, 2020.

3. Crossbow Technology, Inc. MICAz Wireless Measurement System. Data sheet,
available for download at http://www.xbow.com/Products/Product_pdf_files/

Wireless_pdf/MICAz_Datasheet.pdf, Jan. 2006.
4. M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez, and

P. Schwabe. High-speed Curve25519 on 8-bit, 16-bit and 32-bit microcontrollers.
Designs, Codes and Cryptography, 77(2–3):493–514, Dec. 2015.

5. C. Gu. Integer version of Ring-LWE and its applications. Cryptology ePrint
Archive, Report 2017/641, 2017. http://eprint.iacr.org/2017/641.

6. N. Gura, A. Patel, A. S. Wander, H. Eberle, and S. Chang Shantz. Comparing ellip-
tic curve cryptography and RSA on 8-bit CPUs. In M. Joye and J.-J. Quisquater,
editors, Cryptographic Hardware and Embedded Systems — CHES 2004, volume
3156 of Lecture Notes in Computer Science, pages 119–132. Springer Verlag, 2004.

7. M. Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625, 2015. http://eprint.iacr.org/2015/625.

8. M. Hamburg. ThreeBears: Round 2 specification. Available for download at
http://csrc.nist.gov/projects/post- quantum- cryptography/round- 2-

submissions, 2019.
9. M. Hutter and P. Schwabe. Multiprecision multiplication on AVR revisited. Jour-

nal of Cryptographic Engineering, 5(3):201–214, Sept. 2015.
10. M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen. pqm4: Testing and

benchmarking NIST PQC on ARM Cortex-M4. Cryptology ePrint Archive, Report
2019/844, 2019. http://eprint.iacr.org/2019/844.

11. A. A. Karatsuba and Y. P. Ofman. Multiplication of multidigit numbers on au-
tomata. Doklady Akademii Nauk SSSR, 145(2):293–294, ?? 1962.

12. J. M. Kelsey, S.-J. H. Chang, and R. A. Perlner. SHA-3 derived functions:
cSHAKE, KMAC, TupleHash and ParallelHash. NIST Special Publication 800-
185, available for download at http://doi.org/10.6028/NIST.SP.800-185, 2016.

13. Z. Liu, H. Seo, J. Großschädl, and H. Kim. Reverse product-scanning multiplication
and squaring on 8-bit AVR processors. In L. C.-K. Hui, S. Qing, E. Shi, and S.-M.
Yiu, editors, Information and Communications Security — ICICS 2014, volume
8958 of Lecture Notes in Computer Science, pages 158–175. Springer Verlag, 2015.

14. National Institute of Standards and Technology (NIST). Submission requirements
and evaluation criteria for the post-quantum cryptography standardization process.
Available for download at http://csrc.nist.gov/CSRC/media/Projects/Post-

Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf,
2016.

15. National Institute of Standards and Technology (NIST). NIST reveals 26 algo-
rithms advancing to the post-quantum crypto ‘semifinals’. Press release, available
online at http://www.nist.gov/news-events/news/2019/01/nist-reveals-26-

algorithms-advancing-post-quantum-crypto-semifinals, 2019.

