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Preface

Systems theory is a branch of applied mathematics, it is interdisciplinary and
develops activities in fundamental research which are at the frontier of mathematics,
automation and engineering sciences. It is everywhere, innumerable and daily,
moreover is there something which is not system: it is present in medicine, in
commerce, economy, in psychology, in biological sciences, in finance, in archi-
tecture (construction of towers, bridges, etc ...), weather forecast, robotics, auto-
mobile, aeronautics, localization systems and so on. These are the few fields of
application that are useful or even essential for our society. It is a question of
studying the behavior of systems and acting on their evolution. Among the most
important notions in system theory which attracted the most attention is stability.

The notion of stability is crucial. Indeed, the evolution of a dynamic system is
described by a system of differential equations, partial differential equations... These
systems generally have an infinite number of solutions, unless initial conditions are
fixed. Depending on the choice of these initial values, there can be an infinity of
operating regimes. To illustrate this idea, we cite the example of a clock. This one
works with a well-determined amplitude of the pendulum although at the starting
time, the pendulum can deviate more or less from its vertical position. If at the
starting time of the clock one does not deviate sufficiently the pendulum, it will stop
after a few oscillations. On the other hand, if the deviation is large enough, the
amplitude of the oscillations of the pendulum will become fully determined after a
short time and the clock will operate with this amplitude, for an infinite time. So the
equations describing the clock functioning have two stationary solutions: an
equilibrium position corresponding to the pendulum at rest and a periodic solution
corresponding to the normal operation of the clock. So to understand the evolution
of any dynamic system, it is important to know all the stable solutions of its
equations, these are equilibrium states.

The existing literature on systems stability is quite important but disparate and
the purpose of this book is to bring together in one document the essential results on
the stability of infinite dimensional dynamical systems. In addition and as such
systems evolve in time and space, explorations and research on their stability were
mainly focused on the whole domain in which the system evolved. We have
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strongly felt that, in this sense, important considerations were missing: those which
are consist in considering that the system of interest may be unstable on the whole
domain but stable in a certain region of the whole domain. This is the case in many
applications ranging from engineering sciences to living science. For this reason,
we have dedicated this work to extension of classical results on stability to the
regional case.

This book has its origins in the book I wrote with Professor El Jai [1]. An
important consideration was that it should be accessible to mathematicians and to
graduate engineering with a minimal background in functional analysis. Moreover,
for the majority of the students this would be their only acquaintance with infinite
dimensional system. It is organized by following increasing difficulty. The two first
chapters deal with stability and stabilization of infinite dimensional linear systems
described by partial differential equations.

The following chapters concern original and innovative aspects of stability and
stabilization of certain classes of systems motivated by real applications, that is to
say bilinear and semilinear systems. The stability of these systems has been con-
sidered from a global and regional point of view.

A particular aspect concerning the stability of the gradient has also been con-
sidered for various classes of systems.

This book is for students of master’s degrees, engineering students and
researchers interested in the stability of infinite dimensional dynamical systems, in
various aspects.

Our thanks to Prof. Abdelhaq El Jai the president of the “Systems Theory”
network who initiated research on applied mathematic in Morocco in 1978. He has
greatly contributed to the development of research in systems theory in most
Moroccan universities. To all the researchers of MACS Laboratory particularly
M. Ouzahra and Y. Benslimane with whom I initiated the concept of regional
stabilization. This new concept has led to developments of important results and to
openings on other lines of research that can enrich approaches in systems theory, as
well as all the colleagues who were part of their constructive remarks.

Finally we would like to thank the Hassan II Academy of Sciences and
Techniques for its support, through the network Systems Theory, which made it
possible to finalize this work.

Meknes, Morocco El Hassan Zerrik
August 2020
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