Skip to main content

Advanced Non-linear Generative Model with a Deep Classifier for Immunotherapy Outcome Prediction: A Bladder Cancer Case Study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12661))

Abstract

Immunotherapy is one of the most interesting and promising cancer treatments. Encouraging results have confirmed the effectiveness of immunotherapy drugs for treating tumors in terms of long-term survival and a significant reduction in toxicity compared to more traditional chemotherapy approaches. However, the percentage of patients eligible for immunotherapy is rather small, and this is likely related to the limited knowledge of physiological mechanisms by which certain subjects respond to the treatment while others have no benefit. To address this issue, the authors propose an innovative approach based on the use of a non-linear cellular architecture with a deep downstream classifier for selecting and properly augmenting 2D features from chest-abdomen CT images toward improving outcome prediction. The proposed pipeline has been designed to make it usable over an innovative embedded Point of Care system. The authors report a case study of the proposed solution applied to a specific type of aggressive tumor, namely Metastatic Urothelial Carcinoma (mUC). The performance evaluation (overall accuracy close to 93%) confirms the proposed approach effectiveness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.st.com/en/automotive-infotainment-and-telematics/sta1295.html.

  2. 2.

    https://iplab.dmi.unict.it/immunotherapy/.

References

  1. Alsaab, H.O., et al.: PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharmacol. 8, 561 (2017)

    Article  Google Scholar 

  2. Apolo, A.B., et al.: Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J. Clin. Oncol. 35(19), 2117 (2017)

    Article  Google Scholar 

  3. Arena, P., Baglio, S., Fortuna, L., Manganaro, G.: Dynamics of state controlled CNNs. In: 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the Worl (ISCAS 1996), vol. 3, pp. 56–59. IEEE (1996)

    Google Scholar 

  4. Banna, G.L., et al.: The promise of digital biopsy for the prediction of tumor molecular features and clinical outcomes associated with immunotherapy. Front. Med. 6, 172 (2019)

    Article  Google Scholar 

  5. Bellmunt, J., et al.: Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376(11), 1015–1026 (2017)

    Article  Google Scholar 

  6. Bui, T.D., Shin, J., Moon, T.: 3D densely convolutional networks for volumetric segmentation (2017). http://arxiv.org/abs/1709.03199

  7. Cha, K.H., et al.: Bladder cancer treatment response assessment in CT using radiomics with deep-learning. Sci. Rep. 7(1), 1–12 (2017)

    Article  Google Scholar 

  8. Cha, K.H., et al.: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med. Phys. 43(4), 1882–1896 (2016)

    Article  Google Scholar 

  9. Chua, L.O., Roska, T.: The CNN universal machine. i. the architecture. In: Proceedings of Second International Workshop on Cellular Neural Networks and their Applications (CNNA 1992), pp. 1–10. IEEE (1992)

    Google Scholar 

  10. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)

    Article  MathSciNet  Google Scholar 

  11. Santis De, M., et al.: Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J. Clinical Oncol. 30(2), 191 (2012)

    Article  Google Scholar 

  12. Ding, X., et al.: Clinicopathological and prognostic value of PD-L1 in urothelial carcinoma: a meta-analysis. Cancer Manage. Res. 11, 4171 (2019)

    Article  Google Scholar 

  13. Dromain, C., Beigelman, C., Pozzessere, C., Duran, R., Digklia, A.: Imaging of tumour response to immunotherapy. Eur. Radiol. Exp. 4(1), 2 (2020)

    Article  Google Scholar 

  14. Eisenhauer, E.A., et al.: New response evaluation criteria in solid tumours: revised recist guideline (version 1.1). Eur. J. Cancer 45(2), 228–247 (2009)

    Article  Google Scholar 

  15. Rundo, F., Conoci, S., Banna, G.L.: Image processing method, corresponding system and computer program product (2018)

    Google Scholar 

  16. Ferlay, J., et al.: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136(5), E359–E386 (2015)

    Article  Google Scholar 

  17. Fortuna, L., Arena, P., Balya, D., Zarandy, A.: Cellular neural networks: a paradigm for nonlinear spatio-temporal processing. IEEE Circuits. Syst. Mag. 1(4), 6–21 (2001)

    Article  Google Scholar 

  18. Garapati, S.S., et al.: Urinary bladder cancer staging in CT urography using machine learning. Med. Phys. 44(11), 5814–5823 (2017)

    Article  Google Scholar 

  19. Gordon, M., et al.: Segmentation of inner and outer bladder wall using deep-learning convolutional neural network in CT urography. In: Proceedings of Medical Imaging 2017: Computer-Aided Diagnosis. International Society for Optics and Photonics, vol. 10134, p. 1013402 (2017)

    Google Scholar 

  20. Hasnain, Z., et al.: Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients. PloS one 14(2) (2019)

    Google Scholar 

  21. Havel, J.J., Chowell, D., Chan, T.A.: The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19(3), 133–150 (2019)

    Article  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  23. Lambin, P., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

    Article  Google Scholar 

  24. Lee, C.C., de Gyvez, J.P.: Color image processing in a cellular neural-network environment. IEEE Trans. Neural Networks 7(5), 1086–1098 (1996)

    Article  Google Scholar 

  25. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017). https://doi.org/10.1016/j.neucom.2016.12.038. https://www.sciencedirect.com/science/article/abs/pii/S0925231216315533

    Article  Google Scholar 

  26. Ma, X., et al.: 2D and 3D bladder segmentation using u-net-based deep-learning. In: Medical Imaging 2019: Computer-Aided Diagnosis. International Society for Optics and Photonics, vol. 10950, p. 109500Y (2019)

    Google Scholar 

  27. Massard, C., et al.: Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clinical Oncol. 34(26), 3119 (2016)

    Article  Google Scholar 

  28. Powless, T., et al.: Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. The Lancet 391(10122), 748–757 (2018)

    Article  Google Scholar 

  29. Roska, T., Chua, L.O.: Cellular neural networks with nonlinear and delay-type template elements. In: IEEE International Workshop on Cellular Neural Networks and their Applications, pp. 12–25 (1990)

    Google Scholar 

  30. Rundo, F., Spampinato, C., Banna, G.L., Conoci, S.: Advanced deep learning embedded motion radiomics pipeline for predicting anti-PD-1/PD-L1 immunotherapy response in the treatment of bladder cancer: preliminary results. Electronics 8(10), 1134 (2019)

    Article  Google Scholar 

  31. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)

    Google Scholar 

  32. Seront, E., Machiels, J.P.: Molecular biology and targeted therapies for urothelial carcinoma. Cancer Treat. Rev. 41(4), 341–353 (2015)

    Article  Google Scholar 

  33. Sharma, P., et al.: Efficacy and safety of nivolumab monotherapy in metastatic urothelial cancer (mUC): Results from the phase I/II checkmate 032 study (2016)

    Google Scholar 

  34. Shkolyar, E., et al.: Augmented bladder tumor detection using deep learning. Eur. Urol. 76(6), 714–718 (2019)

    Article  Google Scholar 

  35. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019)

    Article  Google Scholar 

  36. Spencer, K.R., Wang, J., Silk, A.W., Ganesan, S., Kaufman, H.L., Mehnert, J.M.: Biomarkers for immunotherapy: current developments and challenges. Am. Soc. Clinical Oncol. Educ. book 36, e493–e503 (2016)

    Article  Google Scholar 

  37. Wang, G., Lam, K.M., Deng, Z., Choi, K.S.: Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques. Comput. Biol. Med. 63, 124–132 (2015)

    Article  Google Scholar 

  38. Wu, E., et al.: Deep learning approach for assessment of bladder cancer treatment response. Tomography 5(1), 201 (2019)

    Article  Google Scholar 

  39. Zhou, T.C., Sankin, A.I., Porcelli, S.A., Perlin, D.S., Schoenberg, M.P., Zang, X.: A review of the PD-1/PD-L1 checkpoint in bladder cancer: from mediator of immune escape to target for treatment. In: Urologic Oncology: Seminars and Original Investigations. vol. 35, pp. 14–20. Elsevier (2017)

    Google Scholar 

  40. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Rundo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rundo, F. et al. (2021). Advanced Non-linear Generative Model with a Deep Classifier for Immunotherapy Outcome Prediction: A Bladder Cancer Case Study. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68763-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68762-5

  • Online ISBN: 978-3-030-68763-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics