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Abstract. This paper presents an empirical study of the relationship
between the density of small-medium sized random graphs and their
planarity. It is well known that, when the number of vertices tends to
infinite, there is a sharp transition between planarity and non-planarity
for edge density d = 0.5. However, this asymptotic property does not
clarify what happens for graphs of reduced size. We show that an un-
expectedly sharp transition is also exhibited by small and medium sized
graphs. Also, we show that the same “tipping point” behavior can be
observed for some restrictions or relaxations of planarity (we considered
outerplanarity and near-planarity, respectively).

Keywords: Planarity · Random graphs · Outerplanarity · Near-
planarity.

1 Introduction

Several popular Graph Drawing algorithms devised to draw graphs of small-
medium size assume that the graph to be drawn is planar both in the static
setting [17,10,16] and in the dynamic one [2,7,4]. Hence, to assess the practical
applicability of such algorithms it is crucial to study the probability that a small-
medium sized graph (say of about 100–200 vertices) is planar. In particular, it
is interesting to consider how this probability varies as a function of the density
of the graph. We might have that the probability of planarity changes smoothly
or that it changes abruptly, exhibiting a tipping-point behaviour.

A tipping point is a threshold that, when exceeded, leads to a sharp change
in the state of a system. In sociology, for example, a tipping point is a time when
most of the members of a group suddenly change their behavior by adopting a
practice that before was considered rare. In climate study, a tipping point is a
quick and irreversible change in the climate, triggered by some specific cause, like
the growth of the global mean surface temperature. Even in graph theory, tipping
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Fig. 1. Function ζ(n, d) for n ∈ [1, 400] and d ∈ [0, 3] in four cases: (a) c1=5, c2=0.5,
c3=20, c4=0.5; (b) c1=5, c2=0.5, c3=8, c4=0.5; (c) c1=5, c2=0.5, c3=4, c4=0.5; and
(d) c1=10, c2=0.5, c3=1, c4=0.5.

points have been found. As an example, in 1960 Erdös and Rènyi established
that a random graph G(n,m) with n vertices and m edges undergoes an abrupt
change when the average vertex degree is equal to one, that is when m ≈ n/2 [9].
Namely, when m = cn/2 and c < 1, asymptotically almost surely the connected
components are all of size O(log n), and are either trees or unicyclic graphs.
Conversely, when c > 1, almost surely there is a unique giant component of
size Θ(n). The density d = m/n = 1/2 is sometimes referred to as the critical
density or phase transition density. See [3,11] for a discussion of these concepts.

In this paper we investigate whether the density plays a similar role for the
planarity of small-medium sized graphs. Namely, when the the density of such
graphs increases, does the probability of planarity change smoothly or abruptly?

To answer this question one could think of using the result of  Luczak et
al. [13] who show that a random graph is almost surely non-planar if and only if
the number of edges is n/2 +O(n2/3). From the point of view of the density this
means that a graph is almost surely non-planar if the density is 1/2 +O(n−1/3).
However, the result shows only an asymptotic bound and does not clarify what
happens for small-medium sized graphs. Essentially, this means that, for n→∞
graphs with density greater than 1/2 are almost surely non-planar and that the
“transition range” of density within which the probability of planarity falls from
1 to 0 is Θ(n−1/3). This result has been confirmed in [15], where it is proved that
a graph with infinitely many vertices and density 1/2 has probability ≈ 0.998 to
be planar. Again, this gives no hint about how large is in practice this transition
range for small values of n. For example, Fig. 1 shows four plots for different
values of the constants c1, . . . , c4 of the function ζ(n, d) which has both the
asymptotic behaviors described in [13] (see Appendix A.1).

ζ(n, d) =
1

2(d−(0.5+c1/nc2 ))·(c3+c4n1/3) + 1

Depending on the values of c1, . . . , c4 the function shows quite different be-
haviours in the range n ∈ [1, 400].
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In this paper we adopt a pragmatic point of view. Namely, we are interested
into investigating what are the properties of a random graph of small-medium
size n when its density increases. In particular, we experimentally measured
that, for each graph size n ≤ 400, there is a value of density that marks a sharp
transition from planar graphs to non-planar ones. This behavior is shared also by
restrictions or relaxations of planarity, such as outerplanarity, and near-planarity.

The paper is structured as follows. Section 2 describes the methodology used
for all experiments. Section 3 describes each experiment in detail. Our conclu-
sions are given in Section 4.

2 Experimental Setting

All the experiments described in Section 3 are composed of three phases: gen-
eration of graphs; measurement; and analysis. In this section we describe the
characteristics of the three phases common to all experiments.

Generation of graphs. In all experiments (but for near-planarity) we used
graphs with a number n of vertices that varies from 1 to 400, increasing at each
step by one. The density d = m

n , where m is the number of edges, varies in a range
that depends on the type of property that we are investigating. In fact, given
a specific property, there always exists an interval of densities, that we call the
significant interval, such that for a graph outside the significant interval either
the property is granted or the property is ruled out, while inside the significant
interval there are both graphs that have the property and graphs that do not.
This is the interval of densities that we aim to experimentally explore1.

For each combination of size n and density d we determined the number of
edges m = Round(n · d) of the graphs to be generated, and generated 10, 000
random graphs with n vertices and m edges2. In particular, we used function
randomSimpleGraph of the OGDF library [6] for uniformly-at-random generat-
ing labeled graphs with a given number of vertices and edges. All graphs were
simple (no loops or multiple edges allowed).

Measurement. For each combination of size and density we counted how many
graphs have the desired property.

Analysis. We used Wolfram Mathematica 12.0.0.0 for producing the plots that
are in this paper. In particular, we used function ListPlot3D that joins points
with flat polygons. For the property of acyclicity it is also possible to compute
the exact percentage of random graphs that are acyclic. This allowed us to
compare the measured frequency distribution with its probability counterpart
(see Appendix A.2). We used Mathematica also for sampling contour lines of
surfaces and for computing fitting functions of sets of value pairs.

1 For the smallest graphs we may not have all densities. For example, there is no graph
with 5 vertices and density greater than 2.

2 Function Round() rounds a value to the nearest integer, where Round(0.5) = 1.0.
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Fig. 2. (a) Measured fraction of random graphs that are acyclic. (b) Measured fraction
of random graphs that are planar.

3 Experimental Results

In this section we report the results of the experiments to determine how density
and size impact graph-theoretic properties of random graphs of small-medium
size. Since the purpose of the experiments is to show that planarity exhibits
a tipping point behavior when the density increases, we start our experiments
with acyclicity, a property that notoriously does not have tipping points [3, p.
118]. Then, we consider planarity, outerplanarity, and near-planarity, the main
targets of our investigation.

Acyclicity in Random Graphs. Simple graphs with less than three edges are
acyclic. Conversely, since a tree has m = n − 1 edges, when m = n a graph
has at least one cycle. Hence, the significant interval of densities for acyclicity
is [ 3n , 1 −

1
n ]. We used densities ranging from 0.0 to 1.0, with a step of 0.05

performing a total of 84 × 106 tests. The plot in Fig. 2(a) shows the measured
frequency of acyclic graphs as a function of density and size. Is it apparent that
the density is the main cause of the loss of acyclicity, while the size of the graph
seems to have weaker effects. In particular, bigger graphs tend to loose acyclicity
earlier than smaller graphs.

Overall, the percentage of acyclic graphs seems to decrease smoothly through
the significant interval of densities, without any quick transition or drop. Acyclic
graphs allow us to compare a case where the tipping point is absent with the
cases discussed in the next sections where a tipping point is present. Also, for
acyclicity we were able to compute the actual probability of a graph of having
this property and we used the comparison between experimental and theoretical
values to validate the experimental pipeline (see Appendix A.2).
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Fitting curve:

f50% = 0.5 + 4.28796
n0.80709 + 1.20455

n1/3

Horizontal Asymptote at 0.5

Fig. 3. (a) View from the side of the same graph of Fig. 2(b). (b) The samples at
height 50% (red dots) and a possible fitting curve (solid blue line).

Planarity in Random Graphs. We now consider the property of the graph of
being planar. All graphs with less than 9 edges are planar and there is no planar
graph with more than 3n−6 edges. Hence, the significant interval of densities for
planarity is [ 9n ,

3n−6
n ]. For our experiments we used densities from 0.0 to 3.0, with

a step of 0.1, performing a total of 124× 106 planarity tests. In order to test the
generated graphs for planarity we first used the OGDF function makeConnected

that adds the minimum number of edges to make the graph connected and then
called a single planarity test on the obtained graph: it can be easily seen that
the minimality of the added edges implies that the connected graph is planar if
and only if the connected components of the original graph were all planar.

Figs. 2(b) and 3(a) show a plot of the frequency of planar graphs in random
simple graphs as a function of density and size. It is apparent that the percentage
of planar graphs drops from 100% to 0% in a short range of density values. As an
example, for n = 200 we have that the fraction of planar graphs drops from 99%
to 1% in the interval of densities [0.915, 0.598], that corresponds to the 10.6% of
the significant interval. In contrast, for the same value of n, the fraction of acyclic
graphs depicted in Fig. 2(a) drops from 99% to 1% in the 53% of the significant
interval. The tipping point is strongly related with density and appears earlier
in larger graphs. Figure 7(a) in the Appendix shows a plot of 9 equally spaced
contour lines at height 10%, 20%, . . . , 90%.

In order to quantitatively study the behavior of the plot we determined the
sample points of the contour line at height 50% and computed a fitting of such
points. For the fitting, because of the results in [13], we selected a function of
type d = 1/2 + c1/n

c2 + c3/n
1/3. The result of the fitting is shown in Fig. 3(b).

Observe that the value of c2 is consistent with the theory.



6 E. Balloni et al.

(a)
Number of vertices

D
en

si
ty

f1% = 0.5 + 7.84819
n1.01034 + 2.20906

n1/3

f99% = 0.5 + 3.65264
n0.68018 − 0.01296

n1/3

Horizontal Asymptote at 0.5

(b)
Number of vertices

D
en

si
ty

f1% − f99%

Fig. 4. (a) The sample points of the contour lines at height 1% and 99% and the
corresponding fitting curves. (b) Difference between the fitting curves in (a).

In order to evaluate the width of the transition range we determined the
sample points of the contour lines at height 1% and 99% and computed two
fittings, one for each set of such points. For both the fittings, again, we selected
a function of type d = 1/2 + c1/n

c2 + c3/n
1/3. The result are shown in Fig. 4(a).

Observe how the difference between the two curves is very small (Fig. 4(b)).
Surprisingly, for random graphs of small-medium size the drop value for the

measured fraction of planar graph is much smaller than it would have been
hoped for: if you grow the density of a random graph of small-medium size you
very likely loose planarity way before you have any chance to get connectivity
(d = 1). Practically speaking, if you were interested into graphs with density
one, planarity is almost granted for number of vertices in the range [1, 40] but is
almost absent above 100 vertices. For density 1.5, instead, a random graph with
more than 25 vertices is very likely non-planar.

Outerplanarity in Random Graphs. An outerplanar graph is a graph that
admits a planar drawing where all vertices are on the external face. All graphs
with less than 6 edges are outerplanar — the smallest non-outerplanar graphs
being K4 and K2,3 — and there is no outerplanar graph with more than 2n− 3
edges. Hence, the significant interval of densities for outerplanarity is [ 6n ,

2n−3
n ].

For our experiments we used densities from 0.0 to 2.0, with a step of 0.1.
Figure 5(a) shows the fraction of outerplanar graphs as a function of the

number of vertices and density.

Near-Planarity in Random Graphs. A near-planar graph is a graph that
can be made planar by removing (at most) one edge [5]. Near-planar graphs are
also called skewness-1 or almost planar graphs [8]. The smallest not near-planar
graph is K3,4, with 12 edges. From the definition of near-planar graphs it follows
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Fig. 5. (a) Measured fraction of random graphs that are outerplanar. (b) Measured
fraction of random graphs that are near-planar.

that such graphs have a maximum of 3n− 6 + 1 vertices. Hence, the significant
interval of densities for near-planarity is [ 14n ,

3n−5
n ]. In our experiments we used

densities ranging from 0.0 to 3.0 increasing by 0.1. The recognition of near-planar
graphs can be made in quadratic-time: it suffices to test for planarity any graph
obtained by removing one edge.

Figure 5(b) shows the measured fraction of random graphs that are near-
planar as a function of the number of vertices (from 1 to 200) and the density.
Observe that the transition from near-planar graphs to non-near-planar ones
is sharper than what we measured for planarity or quasi-planarity, although it
occurs for higher values of densities.

4 Conclusion and Future Work

We reported empirical evidence of the existence of a tipping point for planarity
in random graphs of small-medium size. The same phenomenon appears to be
present for restrictions and relaxations of planarity as outerplanarity and near-
planarity. It would be interesting to measure whether other popular families
of ‘beyond planar’ graphs, as 1-planar or quasiplanar graphs, also feature the
same abrupt transition in their distribution in random graphs. Unfortunately,
testing 1-planarity is NP-complete [12] even for near-planar graphs [5] and, to
our knowledge, no implementation of the FPT algorithm in [1] for testing 1-
planarity is available. Also, no testing algorithm has been proposed for quasi-
planarity. Finally, we could consider other types of graphs, as random bipartite,
biconnected, or triconnected graph, as well as other graph models like small-
world graphs or scale-free graphs.
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A Appendix

A.1 Asymptotic Study of Function ζ(n, d)

Function ζ(n, d), mentioned in Section 1 is defined as follows:

p = ζ(n, d) =
1

2(d−(0.5+c1/nc2 ))·(c3+c4n1/3) + 1
(1)

In this section we show that: (i) the transition value for which ζ(n, d) = 0.5
when n→∞ is equal to d = 0.5 and (ii) the transition range of numbers of edges
within which the probability of planarity falls from 1 to 0 is O(n2/3) and, hence,
the transition range expressed with respect to density d = m/n is O(n−1/3). For
the first statement, consider the function d = ψ(n, p) obtained by converting
Equation 1 to be explicit with respect to the density d:

d = ψ(n, p) =
log2(1/p− 1)

c3 + c4n1/3
+ (0.5 + c1/n

c2) (2)

It is immediate to observe that, provided that c2, c5 > 0, the limit for n→∞
of ψ(n, 0.5), where p = 0.5 is meant to capture the transition point, is d = 0.5.

Second, we consider the transition range along the d-coordinate where ζ(n, d)
falls from pmax = 0.9 to pmin = 0.1 (any other pair of constants pmax > pmin

being equivalent). This is given by ψ(n, pmin) − ψ(n, pmax). In order to show
that this range falls as n−5/3, we divide this quantity by n−5/3 and show that
the limit for n→∞ of the obtained function is a constant. In fact we have:

ψ(n, pmax)− ψ(n, pmin)

n−1/3
=

log2(1/pmin − 1)− log2(1/pmax − 1)

c3n−1/3 + c4
(3)

Since the numerator of Equation 3 is a constant and since limn→∞(n−1/3) =
0, we have that the limit for n→∞ of Equation 3 is also a constant.

A.2 Comparison with Theoretical Values

For the case of acyclicity, we were able to compute the actual probability of a
random graph G(n,m) to be acyclic. In fact, since the number of possible edges
in a simple n-vertex graph is

(
n
2

)
, the number gn,m of labeled simple graphs with

m edges is gn,m =
((n

2)
m

)
. On the other hand, the number fn,k of labeled forests

with n vertices and k connected components is [14]:

fn,k =

(
n

k

) k∑
i=0

(−1

2
)i(k + i)i!

(
k

i

)(
n− k
i

)
nn−k−i−1 (4)

where
(
x
y

)
is assumed to be zero when y > x. Since each edge added to a forest

decreases the number of connected components by one, we have k = n−m (also,
recall that in a forest m < n). Therefore, from Equation (4) we can obtain the
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Fig. 6. (a) Probability of random graphs to be acyclic. (b) The absolute value of the
difference between the measured frequency and the theoretical probability of the graph
to be acyclic.

number fn,m of labeled forests with m edges, plot the ratio
fn,m

gn,m
, and compare

this function with the computed percentage. A plot of the probability
fn,m

gn,m
of

R(n,m) to be acyclic for n ∈ [1, 400] and d = m/n ∈ [0, 1] is in Fig. 6(a).
Figure 6(b), shows the absolute value of the difference between the computed

frequency and the actual probability. The average of such values is 0.132% with
the peak value at 1.57%. In particular, most of the noise seem to occur in the
regions where the fraction of cyclic and acyclic graphs is more balanced. If instead
of the absolute value we consider the error with its sign, we have an average error
of −0.0036%. This low value is an indication that the error is not biased towards
higher or lower values with respect to the theoretical ones.

Overall, for the above discussed reasons we conclude that the experimental
pipeline is sound.
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Fig. 7. A plot of 9 equally-spaced contour lines of the same graph of Fig. 2(b) at height
10%, 20%, . . . , 90%.
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