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B0-VPG Cocomparability Graphs

Sreejith K. Pallathumadam ID and Deepak Rajendraprasad ID

Indian Institute of Technology Palakkad, India

Abstract. B0-VPG graphs are intersection graphs of vertical and hor-
izontal line segments on a plane. Cohen, Golumbic, Trotter, and Wang
[Order, 2016] pose the question of characterizing B0-VPG permutation
graphs. We respond here by characterizing B0-VPG cocomparability
graphs. This characterization also leads to a polynomial time recogni-
tion and B0-VPG drawing algorithm for the class. Our B0-VPG drawing
algorithm starts by fixing any one of the many posets P whose cocom-
parability graph is the input graph G. The drawing we obtain not only
visualizes G in that one can distinguish comparable pairs from incompa-
rable ones, but one can also identify which among a comparable pair is
larger in P from this visualization.

Keywords: Poset Visualization · Permutation graph · Cocomparability
graph · B0-VPG · Graph drawing.

1 Introduction

Representing a graph as an intersection graph of two-dimensional geometric ob-
jects like strings, line segments, rectangles and disks is a means to depict a graph
on the plane. When the graph being represented is a comparability or cocom-
parability graph, one can also ask whether the “direction” of the comparability
relation in the associated poset can also be inferred from the drawing. In this
paper we characterize cocomparability graphs which can be represented as inter-
section graphs of vertical and horizontal line segments in a plane. For the posets
whose cocomparability graphs can be represented thus, we describe a represen-
tation from which one can also infer the direction of the comparability relation.
Our drawing algorithm runs in polynomial time.

Bk-VPG graphs are intersection graphs of simple paths with at most k bends
on a two-dimensional grid. Here, a path is simple if it does not pass through any
grid vertex twice, and two paths are said to intersect if they share a vertex of
the grid. The name Bk-VPG is an abbreviation for Vertex-intersection graphs of
k-Bend Paths on a Grid. In particular, B0-VPG graphs are intersection graphs
of vertical and horizontal line segments on a plane. The bend number of a graph
G is the minimum k for which G belongs to Bk-VPG.

The dimension of a poset P = (X,≺) is the smallest k such that ≺ is the in-
tersection of k total orders on X . The comparability graph of P is the undirected
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graph on the vertex set X with edges between the pairs of elements comparable
in P . A graph G is a comparability graph if it is the comparability graph of a
poset. If two posets have the same comparability graph, then they have the same
dimension [29]. Hence we can unambiguously define the dimension of a compa-
rability graph G as the dimension of any poset P whose comparability graph is
G. The complement of a comparability graph is a cocomparability graph. A per-
mutation graph is a comparability graph of dimension at most two. It is known
that a graph G is a permutation graph if and only if G is both comparability
and cocomparability [26].

Cohen et al. [11] illustrated, via an elegant picture-proof, that if G is a
comparability graph of dimension k (k ≥ 1), the bend number of its complement
G is at most k − 1. In particular therefore, the bend number of a permutation
graph is either 0 or 1. They posed the problem of characterizing permutation
graphs with bend number 0 as an open question (Qn 4.2 in [11]). We settle this
question with a stronger result. We characterize cocomparability graphs with
bend number 0 as follows (Theorem 1).

The simple cycle on k vertices is denoted by Ck. A C4 together with an
additional edge e between two non-consecutive vertices of the C4 is a diamond
and the edge e is a diamond diagonal. Two vertices x and y in a graph G are
diamond related if there exists a path from x to y in G made up of diamond
diagonals alone. This is easily verified to be an equivalence relation that refines
the connectivity relation in G.

Theorem 1. A cocomparability graph G is B0-VPG if and only if

(i) No two vertices of an induced C4 in G are diamond related, and
(ii) G does not contain an induced subgraph isomorphic to C6, the complement

of C6.

A poset P = (X,≺) is an interval order if all the elements of X can be
mapped to intervals on R such that ∀x, y ∈ X , x ≺ y if and only if the interval
representing x is disjoint from and to the left of the interval representing y.
Complements of the comparability graphs of interval orders form the well known
class of interval graphs. While interval graphs are trivially B0-VPG, it is known
that there exists interval orders of arbitrarily high dimension [3]. Hence the
class of B0-VPG cocomparability graphs is richer than the class of B0-VPG
permutation graphs. In fact, since permutation graphs are C6-free, the first of
the two conditions in Theorem 1 characterizes B0-VPG permutation graphs.

Corollary 1. A permutation graph G is B0-VPG if and only if no two vertices
of an induced C4 in G are diamond related.

A naive check for the conditions in Theorem 1 can be done in O(n6) time.
Combining this with any of the known polynomial time recognition algorithms
for cocomparability graphs [18,12] will give a polynomial time recognition al-
gorithm for B0-VPG cocomparability graphs. We do not try to optimize the
recognition algorithm here, but only note that this is in contrast to the NP-
completeness of recognizing B0-VPG graphs.
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The above algorithm starts by fixing a partial order PG whose cocompara-
bility graph is G and a linear extension σ of PG. The resulting drawing D ends
up being a representation of PG = (V (G),≺P ) in the following sense. We define

three binary relations ≺v,h
D , ≺h,v

D and ≺D among vertices of G based on the
drawing D as follows.

Definition 1. Let x and y be two vertices in V (G) and let Ix and Iy be the line
segments representing them in D, respectively.

– x ≺v,h
D y if Ix is either vertically below Iy or if both are intersected by a

horizontal line, Ix is to the left of Iy.

– x ≺h,v
D y if Ix is either to the left of Iy or if both are intersected by a vertical

line, Ix is vertically below Iy.

– x ≺D y if and only if x ≺v,h
D y when Ix is horizontal and x ≺h,v

D y when Ix
is vertical.

While the above relations are not even partial orders in general, in our draw-
ing D, the relation ≺D faithfully captures ≺P . Theorem 2 states this formally
and Figure 1 illustrates an example.

Theorem 2. Any poset PG = (VG,≺P ) whose cocomparability graph G is B0-
VPG has a two dimensional visualization D such that x ≺P y if and only if
x ≺D y.

a b

d ec f

hg i

Ib Ie

Ic

Ig

Ia

Id

If

Ii

Ih

Fig. 1: Hasse diagram of a poset corresponding to a B0-VPG cocomparability
graph and a B0-VPG representationD in which the covering relation is indicated
by thin directed paths for clarity. The directed paths with blue color and green
color respectively depict the relations ≺h,v

D and ≺v,h
D .
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1.1 Literature

Bk-VPG graphs were introduced by Asinowski et al. in 2012 [2] as a parameter-
ized generalization for string graphs (intersection graphs of curves in a plane)
and grid intersection graphs (bipartite graphs which are intersection graphs of
vertical and horizontal segments in the plane in which all the vertices in one
part are represented by vertical segments and all the vertices in the other part
by horizontal line segments). Grid Intersection graphs (GIGs) are equivalent to
bipartite B0-VPG graphs. Similarly one can show that Bk-VPG graphs with an
unrestricted k, which are called VPG graphs simpliciter, are equivalent to string
graphs. B0-VPG graphs are also equivalent to 2-DIR graphs, where a k-DIR
graph is an intersection graph of line segments lying in at most k directions in
the plane. All these equivalences were formally established in [2].

The NP-completeness of the recognition problem for VPG graphs follows
from that of string graphs [23,27]. For B0-VPG graphs, it follows from that of
2-DIR graphs [24]. Chaplick et al. showed that, ∀k ≥ 0, it is NP-complete to
recognize whether a given graphG is in Bk-VPG even whenG is guaranteed to be
in Bk+1-VPG and represented as such [7]. This also shows that ∀k ≥ 0 the classes
Bk-VPG and Bk+1-VPG are separated. Cohen et al. showed that, ∀k ≥ 0, there
exists a cocomparability graph with bend number k (Theorem 3.1 in [11]). This
shows that, ∀k ≥ 0, the classes Bk-VPG and Bk+1-VPG are separated within
cocomparability graphs. The question of a similar separation within chordal
graphs was left open in [7] and a partial answer was given in [4].

Since the Bk-VPG representation is a kind of planar representation, the bend
number of planar graphs have received special attention. Chaplick and Ueckerdt
showed, disproving a conjecture in [2], that every planar graph is B2-VPG [8].
Every planar bipartite graph is a GIG [21] and hence B0-VPG. The order di-
mension of GIGs has also been investigated in literature [6]. A polynomial time
decision algorithm for chordal B0-VPG graphs is developed in [5]. Characteriza-
tions for B0-VPG are known within the classes of split graphs, chordal bull-free
graphs, chordal claw-free graphs [20] and block graphs [1].

Subclasses of cocomparability graphs within which a characterization for
B0-VPG is known include cographs, bipartite permutation graphs, and interval
graphs. Cographs, which form a subgraph of permutation graphs are B0-VPG
if and only if they do not contain an induced W4 [10]. A W4 is a C4 together
with a universal fifth vertex. All bipartite permutation graphs are B0-VPG [11].
Interval graphs are trivially B0-VPG, since the interval representation itself is a
B0-VPG representation. Theorem 1 subsumes these three results.

Towards the end of this paper, we discuss a two dimensional visualization
of posets. The most common way to visualize a poset P = (X,≺) so far is
Hasse Diagram (also called Order Diagram). The problem of drawing a Hasse
diagram algorithmically was addressed by many algorithms e.g. upward planar
drawing [13], dominance drawing [14], confluent drawing [15], weak dominance
drawing [22]. The key concern here is to get a crossing-free drawing in which no
two upward edges cross at a non vertex point. The first three algorithms can
only handle posets of dimension at most two and a few other cases. Though
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our drawing handles only those posets whose cocomparability graph is B0-VPG
irrespective of its dimension, crossing-freeness is not a concern in our drawing
since comparability is inferred from the relative position of lines.

1.2 Terminology and Notation

The complement of a graph G is denoted as G. We denote a path and a cycle
on n vertices, respectively, by Pn and Cn. A graph G is said to be H-free if G
contains no induced subgraph isomorphic to the graph H . A poset P is said to
be T -free if P contains no induced subposet isomorphic to the poset T . In this
case, P is also said to exclude T .

The closed neighborhood of a vertex v is the set of neighbors of v together
with v. An Asteroidal Triple (AT ) is a set of three independent vertices such that
there exists a path between each two of them not passing through any vertex from
the closed neighborhood of the third. We have defined interval orders, interval,
comparability, cocomparability, and permutation graphs in the introduction. We
will make use of the facts that C4-free cocomparability graphs are interval graphs
[17] and all cocomparability graphs are AT-free [19].

2 Proof of Theorem 1

The necessity of the two conditions in Theorem 1 is relatively easier to establish,
and hence we do that first. A C4 has a unique B0-VPG representation as shown in
Figure 2(a) [2]. Notice that no two vertices of an induced C4 can be represented
by collinear paths in a B0-VPG representation. In contrast, one can see that in
any B0-VPG representation of a C3, at least two of its three vertices have to
be represented by collinear paths. Moreover, in any B0-VPG representation of
a diamond, the endpoints of the diamond diagonal have to be represented by
collinear paths as shown in Figure 2(b) [20]. Since collinearity is transitive, any
two vertices which are diamond related have to be represented by collinear paths.
This shows the necessity of the the first condition in Theorem 1. Notice that C6

has a C3 in which each pair of vertices is part of an induced C4. Being part of
C3 forces two of the corresponding three paths to be collinear which prevents a
B0-VPG representation of the corresponding induced C4. Hence the necessity of
the second condition.

The three step algorithm (Algorithm 1) and the proof of its correctness (Ap-
pendix A) are devoted to showing that these two necessary conditions are suf-
ficient to construct a B0-VPG representation of a cocomparability graph. The
construction is completed in three steps. We start with a cocomparability graph
G satisfying the two conditions of Theorem 1. In the first step, we contract a
subset of edges of G to obtain a bipartite minor RG of G with a couple of addi-
tional properties. A set of vertices in G which gets represented by a single vertex
in RG after all the edge contractions is referred to as a branch set of RG. We will
denote the vertices in RG by the corresponding branch sets. In the second step,
for each of the subgraphs of G induced by each branch set of RG, we find an



6 S. K. Pallathumadam and D. Rajendraprasad

pa

pb

pc

pd

(a) A C4 induced by {a, b, c, d}.

pb

pa

pd

pc

(b) A diamond induced by
{a, b, c, d} with ac as its diagonal.

Fig. 2: The unique B0-VPG representation of C4 and a diamond.

interval representation, again with a few additional properties. In the third and
final step, we fit all the above interval representations together to get a B0-VPG
representation of G.

Before proceeding to the algorithm, we state in the next section some of the
known results which ease our construction.

2.1 Preliminaries

An ordering σ of V of a graph G(V,E) is called a cocomparability ordering or
an umbrella-free ordering if for all three vertices in x <σ y <σ z, adjacency of x
and z implies that at least one of the other pairs are adjacent. If not, (x, y, z) is
called an umbrella in σ.

Lemma 1 ([25]). A graph G is a cocomparability graph if and only if there is
a cocomparability ordering σ of the vertices of G.

Definition 2. Given a graph G and a total ordering σ of V (G), a triple (u, v, w)
of vertices of G where u ≺σ v ≺σ w is called a forbidden triple if there exists a
path from u to w without containing a vertex from the closed neighborhood of v.

Lemma 2. Any umbrella free ordering is forbidden triple free.

Proof. Let σ be an umbrella free ordering. Assume a forbidden triple u ≺σ v ≺σ

w exists. Thus there exists a path from u to w without containing a vertex from
the closed neighborhood of v. If we arrange the vertices of the path together
with v in an order respecting σ, there exists two adjacent vertices u1 and w1

among them such that u1 ≺σ v ≺σ w1. Thus (u1, v, w1) forms an umbrella in σ
which is a contradiction.

Lemma 3 ([9]). Cocomparability is preserved under edge contraction.
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A 2+2 is a poset containing four elements where every element is comparable
with exactly one element. A 2 + 2 poset corresponds to an induced C4 in the
complement of its comparability graph. Thus an interval order cannot contain a
2 + 2. Similarly, if a poset does not have a 2 + 2, then the complement of all of
its comparability graphs will be C4-free cocomparability graphs.

Theorem 3 (Fishburn-1970). [[16], Theorem 6.29 in [30]] A poset is an in-
terval order if and only if it excludes 2 + 2.

Consider a bipartite graph G(A ∪B,E). An ordering σ of A is said to have
adjacency property if the neighborhood of every vertex of B is consecutive in σ.
Here G is called convex if there exists an ordering σ of A with the adjacency
property and biconvex if it is convex and there exists an ordering τ of B with
the adjacency property. Bipartite permutation graphs are biconvex graphs [28].

Theorem 4 ([11]). Bipartite permutation graphs are B0-VPG.

2.2 B0-VPG Algorithm

We see a three-step algorithm to construct a B0-VPG representation for any
arbitrary cocomparability graph satisfying the conditions of Theorem 1. Figure
3 helps to understand the algorithm easily. The first step is depicted in Figure
3b, 3c, 3e and the final drawing in the third step is shown in Figure 3f.

In the following definition, we assume that any self loop produced by an edge
contraction is removed and any parallel edges formed by an edge contraction is
represented by a single edge in the minor.

Definition 3 (dd-minor). A dd-minor of graph G is the graph obtained by
contracting every diamond diagonal in G.

Definition 4 (Reduced dd-minor). A reduced dd-minor of graph G is a min-
imal graph RG that can be obtained by edge contractions of the dd-minor of G
such that no branch-set of RG contains more than one vertex of an induced C4

in G.

Remark 1. Though the dd-minor exists for every graph, a reduced dd-minor does
not exist for every graph. A necessary and sufficient condition for the existence
of a reduced dd-minor for a graph G is that no two vertices of an induced C4 in
G should be diamond related.

If an edge xy (x ≺σ y) is contracted to a new vertex, then the new vertex
is placed at the position of x in σ and labeled as x itself. This results in a
new order σ′ which is a subsequence of σ. By Lemma 3, σ′ is an umbrella-free
ordering. Thus after all the edge contractions to get the minimal graph RG, we
get an umbrella-free ordering σRG

of V (RG) which is a subsequence of σ. This
is sufficient to say that RG is also a cocomparability graph by Lemma 1. In fact,
every vertex B of RG is represented in σRG

by the leftmost (under σ) vertex b
in the branch set B.

For any two branch sets Bi and Bj of RG, Bj,i denotes the vertices in Bj

which have a neighbor in Bi.
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Lemma 4 (Proof in Appendix A). The following claims on the cocompara-
bility graph RG are true.

1. For any two adjacent branch sets B1 and B2, the set B1,2 ∪ B2,1 induces a
clique in G.

2. If B0, B1, B2 form consecutive vertices of a C3 or an induced C4 in RG then
B1,0 ∩B1,2 6= ∅. Moreover, if B0, . . . , Bk−1 is a C3 or an induced C4 in RG,
then there exists an induced cycle b0, . . . , bk−1 in G where each bi ∈ Bi.

3. RG is a bipartite permutation graph.

Relabeling of V (RG) It is clear from Lemma 4.3 that the reduced dd-minor
RG of the cocomparability graph G is a bipartite permutation graph. Given the
umbrella-free ordering σ of G, we inherited the umbrella-free ordering σRG

for
RG which respects σ. In the algorithm, we label each branch set of the left part
of RG with B1, B3, . . . (odd indices) such that i < j implies that in the order σ,
the leftmost vertex in Bi is to the left of the leftmost vertex in Bj . Similarly we
label each branch set of the right part of RG with B0, B2, . . . (even indices) such
that i < j implies that in the order σ, the leftmost vertex in Bi is to the left of
the leftmost vertex in Bj.

Henceforth, we slightly abuse the notation ≺σ for the branch sets of the
reduced dd-minor of G in the following way. For any two such branch sets Bi

and Bj , Bi ≺σ Bj if ∀x ∈ Bi, ∀y ∈ Bj , x ≺σ y. Thus Bi and Bj are said to be
separated in σ if either Bi ≺σ Bj or Bj ≺σ Bi.

Lemma 5 (Proof in Appendix A). For any two branch sets Bi, Bj of the
same parity if i < j, then Bi ≺σ Bj.

Lemma 6 (Proof in Appendix A). For each branch set Bi of RG, G[B∗

i ] is
an interval graph. Moreover, G[B∗

i ] has an interval representation I∗

i satisfying
the following properties.

(i) For all x, y ∈ B∗

i , we have the interval for x to the left of interval for y if
and only if x ≺P y.

(ii) For each neighbor Bj of Bi, all the intervals corresponding to the vertices in
Bj,i are point intervals at a point pj,i.

(iii) If Bj and Bk are two neighbors of Bi such that j < k, then the point pj,i is
to the left of the point pk,i in I∗

i .
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(a) The cocomparability graph G.
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(b) The dd-minor of G.
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(c) A reduced dd-minor RG of G
(also bipartite permutation graph).
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(d) Hasse diagram of an arbitrary poset
PG(V,≺P ) of G. Choose and fix a linear

extension σ = (b, a, c, d, f, e, g, i, h, j).

b a
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e

i

h

d

f

g

j

B1

B3

B5

B0
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(e) Labeled RG respecting σ.
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I0

I2

I4

Ib Ic

Ie

Ii Ih

Ia

Id

If

Ig

Ij

(f) The drawing D which is also a 2-D visu-
alization of PG by Theorem 2.

Fig. 3: Drawing a B0-VPG representation D of a cocomparability graph G sat-
isfying the conditions of Theorem 1. Note that the collinear intersecting line
segments in D are drawn a little apart in order to distinguish them easily.
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Algorithm 1
Input. G is an arbitrary but fixed cocomparability graph satisfying the two
conditions of Theorem 1.
Output. A B0-VPG representation D of G .
Assumptions.
1) PG(V (G),≺P ) is an arbitrary but fixed partial order whose comparability
graph is G.
2) σ is an arbitrary but fixed linear extension of PG and hence an umbrella-free
ordering for G.

1. Step 1: Choose an arbitrary but fixed reduced dd-minor RG of G and label V (RG)
as described in the above mentioned relabeling procedure.

2. Step 2:
(i) For each branch set Bi of RG, let B∗

i = Bi ∪ {Bj,i : BiBj ∈ E(RG)} and we
obtain an interval representation I∗

i of B∗

i using Lemma 6.
(ii) Remove intervals of vertices in B∗

i \ Bi from I∗

i to get Ii.
3. Step 3: Construction of the drawing D using the following steps. Let e and o

respectively (with further subscripts if needed) denote the even and odd indices of
the branch sets of RG.
(i) For each odd-indexed branch set Bo, Io is drawn vertically from the point

(o, (e1−0.5)) to (o, (e2+0.5)) where Be1 and Be2 are the leftmost and rightmost
neighbors of Bo in σRG

.
(ii) Stretch or shrink the intervals in each vertical interval representation Io with-

out changing their intersection pattern, so that for each neighbor Be of Bo,
the point pe,o is at (o, e). This can be done since the intersection pattern of
an interval representation with n intervals is solely determined by the order of
the corresponding 2n endpoints.

(iii) For each even-indexed branch set Be, Ie is drawn horizontally from the point
((o1−0.5), e) to ((o2+0.5), e) where Bo1 andBo2 are the leftmost and rightmost
neighbors of Be in σRG

.
(iv) Stretch or shrink the intervals in each horizontal interval representation Ie

without changing their intersection pattern, so that for each neighbor Bo of
Be, the point po,e is at (o, e).

Proposition 1. The B0-VPG representation D is precisely a B0-VPG repre-
sentation of the cocomparability graph G.

The proof of the above proposition is written in Appendix A. One can easily
verify that Algorithm 1 runs in polynomial time.

3 Proof of Theorem 2

In this section, we fix P (V,≺P ) as the given input poset and G as its cocom-
parability graph. Let D be the B0-VPG representation of G obtained by the
construction employed in the proof of Theorem 1, where the partial order PG
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assumed in Algorithm 1 is P . We argue below that for any two vertices x and
y in V (G), x ≺D y (cf. Definition 1) if and only if x ≺P y and thus establish
Theorem 2. First, we show that if x ≺P y, then x ≺D y. But a simple exchange
of variables is not enough to prove the converse because ≺D is not antisymmetric
in the set of all vertical and horizontal line segments. Hence in order to complete
the proof we show that the relation ≺D is antisymmetric when restricted to the
line segments in D.

3.1 If x ≺P y then x ≺D y

Recall that σ is a linear extension of PG. Thus if x ≺P y, then x ≺σ y and x is
non-adjacent to y in G.

If x and y are in the same branch set Bi of RG then clearly Ix ≺Ii
Iy by

Lemma 6.(i). Here if Ix is horizontal, clearly x ≺v,h
D y. Otherwise, x ≺h,v

D y. If
x and y are in different branch sets, Bi and Bj respectively, of the same parity,
then i < j (Lemma 5). Thus in D, if both are of odd parity, Bi is drawn to the
left of Bj and if both are of even parity, Bi is drawn to the bottom of Bj. Thus

if Ix is vertical, then x ≺h,v
D y and if Ix is horizontal, then x ≺v,h

D y.
If the parity is opposite, we have two sub-cases; that is Bi and Bj are ei-

ther non-adjacent or adjacent. If non-adjacent, the branch set Bj cannot have a
neighbor Bh where h < i. Suppose there exists such a neighbor Bh for Bj such
that h < i. Clearly since Bh is adjacent to Bj , h and i are of the same parity
and hence Bh ≺σ Bi (Lemma 5). Since Bh is adjacent to Bj , there exists a path
from a vertex z ∈ Bh to y ∈ Bj in G[Bh∪Bj ]. Moreover since Bi is disjoint from
Bh and Bj , x has no neighbor in Bh∪Bj , the hence triple (z, x, y) is a forbidden
triple in σ which is a contradiction as per Lemma 2. Since Bj has no opposite
parity neighbor Bh for any h ≤ i, the following property can easily be verified
from our drawing. Thus if Bi is of even parity, then Bi is to the bottom of Bj in
D. Otherwise, Bi to the left of Bj in D. Hence clearly if Ix is horizontal, then

Ix is to the bottom of Iy , that is x ≺v,h
D y. Similarly, if Ix is vertical, then Ix is

to the left of Iy , that is x ≺h,v
D y.

Now the remaining sub-case is that Bi and Bj are adjacent. The following
observation is frequently used in the remaining part of the proof.

Observation 1. If the interval representations Ii and Ij intersects, there exist
at least two intersecting intervals Iu1

∈ Ii and Iv1 ∈ Ij. For any interval Iu ∈ Ii,
if Iu ≺Ii

pj,i, then u ≺σ v1 and if pj,i ≺Ii
Iu then v1 ≺σ u. This is easily inferred

from I∗

i . We can symmetrically argue the same for Iv.

The intervals Ix and Iy do not intersect since x and y are non-adjacent in G.
If Ix contains pj,i, then pi,j (geometrically coinciding with pj,i) has to precede Iy
in Ij . Otherwise due to Observation 1, we get y ≺σ x which is a contradiction.
Similarly if Iy contains pi,j , then Ix has to precede pj,i in Ii. In both these case,

if Ix is horizontal, then x ≺v,h
D y and if Ix is vertical, then x ≺h,v

D y. Henceforth
we assume that neither Ix nor Iy contains the intersection point of Ii and Ij . In
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this case, it is easy to see that x has no neighbors in Bj and y has no neighbors
in Bi.

In order to rule out the following scenarios, we show the existence of a for-
bidden triple in σ which leads to a contradiction as per the Lemma 2.

If Iy ≺Ij
pi,j , then x ≺σ y ≺σ u1 as per Observation 1. Thus (x, y, u1) is a

forbidden triple.
If pj,i ≺Ii

Ix, then v1 ≺σ x ≺σ y as per Observation 1. Thus (v1, x, y) is a
forbidden triple.

Hence pi,j ≺Ij
Iy and Ix ≺Ii

pj,i. In this case, if Ix is horizontal, x ≺v,h
D y

and if Ix is vertical, we get x ≺h,v
D y. Moreover, in both these cases, Ix is to the

left and to the bottom of Iy.

Thus we have proved that when x ≺P y, we get that x ≺v,h
D y when Ix is

horizontal or x ≺h,v
D y when Ix is vertical in the B0-VPG representation D of G.

That is x ≺D y. If x and y are incomparable in PG, then they are adjacent in G
and the corresponding intervals intersect in D.

3.2 Antisymmetry of ≺D

Observation 2. If two opposite parity branch sets are non-intersecting, then
one of them is entirely to the bottom left of the other in D. Hence for all Ix in
the bottom left branch set and for all Iy in the top right branch set, x ≺D y.

Justification. When two branch sets are non-intersecting, they are separated in
σ since otherwise, there will exist a forbidden triple u ≺σ v ≺σ w such that u
and w are in the one branch set and v in the other branch set. Without loss
of generality, let Bi ≺σ Bj . We claim that Bi is entirely to the bottom left of
Bj . Assume not. That is either Bi has an opposite parity neighbor Bk for some
k > j or Bj has an opposite parity neighbor Bh for some h < i or both. In the
first case, there exists a forbidden triple (x, y, z) for any x ∈ Bi, y ∈ Bj and
z ∈ Bk which is a contradiction by Lemma 2. Similarly in the second case, there
exists a forbidden triple (w, x, y) for any w ∈ Bh, x ∈ Bi and y ∈ Bj which is
again a contradiction by Lemma 2.

Observation 3. In D, there is no line segment Ib which is to the bottom right
of a line segment It of an opposite parity branch set.

Justification. Assume It is in Ii and Ib is in Ij . The branch sets Bi and Bj are
of the opposite parity. If they are non-adjacent, then by Observation 2, either
It has to be bottom left of Ib or Ib has to be bottom left of It. In both cases,
Ib can not be bottom right of It. Now we consider the case when the branch
sets are adjacent. Since It and Ib are non-intersecting, there exists intersecting
intervals It1 ∈ Ii and Ib1 ∈ Ij as per Observation 1. In σ, either t precedes b
or b precedes t. These result in the forbidden triple either (t, b, t1) or (b, t, b1)
respectively leading to a contradiction by Lemma 2.

Lemma 7. Any two non-intersecting line segments Ix and Iy in D satisfy either
x ≺D y or y ≺D x, but not both. In particular, the relation ≺D is antisymmetric.
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Proof. Since D is a B0-VPG representation of G, x and y are nonadjacent in
G and hence comparable in P . That is, either x ≺P y or y ≺P x. Therefore,
x ≺D y or y ≺D x. Hence it is enough to verify that x ≺D y and y ≺D x cannot
both be true. This is easily verified when Ix and Iy are both horizontal or both
vertical. Hence we can assume without loss of generality that Ix is horizontal
and Iy is vertical. If both x ≺D y and y ≺D x, then Ix has to be to the bottom
right of Iy . This contradicts Observation 3.

This concludes the proof of Theorem 2. For every two incomparable elements
in ≺P , the corresponding line segments intersect in D. For every two comparable
elements x, y ∈ V (G), if x ≺P y, then x ≺D y. By exchange of variables, if
y ≺P x, then y ≺D x. Lemma 7 asserts that exactly one of the above is true for
any two non-intersecting line segments. Hence x ≺D y only when x ≺P y. Thus
the relation ≺D is isomorphic to the relation ≺P .
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Appendix A Proof of Correctness of Algorithm 1

A.1 Step 1. Reduced dd-minor RG of G

In this step, we contract a subset of edges of G to obtain a bipartite minor RG of
G which satisfies the additional properties listed in Lemma 4. We also label the
branch-sets of RG so that the order implied by this labeling has the adjacency
property (Lemma 8).

We see a few additional properties of RG using which we draw the B0-VPG
representation of G. These properties are clubbed into the following lemma.

Lemma 4 Statement: The following claims on the cocomparability graph RG are
true.

1. For any two adjacent branch sets B1 and B2, the set B1,2 ∪ B2,1 induces a
clique in G.

2. If B0, B1, B2 form consecutive vertices of a C3 or an induced C4 in RG then
B1,0 ∩B1,2 6= ∅. Moreover, if B0, . . . , Bk−1 is a C3 or an induced C4 in RG,
then there exists an induced cycle b0, . . . , bk−1 in G where each bi ∈ Bi.

3. RG is a bipartite permutation graph.

Proof. We prove the claims in the order they are listed.

Proof of Claim 1: First we need to prove that for any two adjacent branch sets
B1 and B2, the subgraph of G induced by B1 ∪B2 is an interval graph. Since no
branch set of RG contains more than one vertex of an induced C4, G[B1 ∪ B2]
is a C4-free cocomparability graph and therefore an interval graph [17].

Now consider any two non-adjacent vertices x, y ∈ B1,2 having a common
neighbor z1 ∈ B1. Assume x and y are adjacent to a single vertex z2 ∈ B2,1.
In order to avoid x and y being part of an induced C4, the possible edge is
z1z2. Clearly z1z2 is a diamond diagonal edge across two branch sets. This is a
contradiction.

Now we assume that there exists no common vertex z2 in the adjacencies
of x and y in B2,1. Consider a shortest path xPy from x to y where all the
intermediate vertices are in B2. Let x

′ and y′ be the vertices adjacent to x and y
respectively in the path. Clearly there cannot be an edge from x or y to the in-
termediate vertices of xPy since otherwise xPy cannot be a shortest path. Thus
only possible edges in order to avoid bigger cycles due to the cocomparability
property and the interval nature of the graph G[B1 ∪B2], are from z1 to the in-
termediate vertices of the path xPy. Hence z1x

′ and z1y
′ edges must exist. As in

the previous paragraph, an edge x′y′ also exists. This forms a diamond diagonal
z1x

′ of the diamond induced by the set {x, x′, y′, z1} which is a contradiction.
Now suppose a vertex x1 ∈ B1,2 is not adjacent to a vertex y1 ∈ B2,1. Then

let y2 be a neighbor of x1 in B2,1 and x2 be a neighbor of y1 in B1,2. The
existence of x2 and y2 are guaranteed by the definition of Bi,j . Notice that since
G[B1,2] and G[B2,1] are cliques, x1 is adjacent to x2 and y1 is adjacent to y2. If
x2 and y2 are non-adjacent, G[{x1, y2, y1, x2}] is an induced C4 in B1∪B2 which
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is a contradiction. If x2 and y2 are adjacent, the edge x2y2 is the diagonal of the
diamond G[{x1, y2, y1, x2}] which is a contradiction.

Proof of Claim 2: First we need to prove that any induced cycle Cn, n ≥ 3 in
RG ensures the existence of an induced cycle Cm in G where m ≥ n. Consider
any induced cycle Cn = {B0, . . . , Bn−1} in RG. Let Gn be the induced subgraph
G[B0 ∪ · · · ∪ Bn−1]. For any i ∈ {0, . . . , n − 1}, if Bi,i−1 ∩ Bi,i+1 6= ∅ (addition
and subtraction are modulo n), choose any vertex bi in that intersection. On
the contrary, if Bi,i−1 ∩ Bi,i+1 = ∅, then consider the vertices bi,i−1 ∈ Bi,i−1

and bi,i+1 ∈ Bi,i+1 such that the distance between them is the shortest. Thus
there exists a shortest path bi,i−1Pbi,i+1 which cannot contain an intermediate
vertex in the sets Bi,i−1 and Bi,i+1. By Claim 1, Bi,i−1∪Bi−1,i induces a clique.
Similarly Bi,i+1 ∪ Bi+1,i also induces a clique. This guarantees the adjacency
between the chosen vertices of any two consecutive branch sets. Thus we get a
cycle Cm in G in which each branch set Bi contributes either a vertex bi or a path
bi,i−1Pbi,i+1. Clearly there is no chord in Cm between two vertices belonging to
two non-adjacent branch sets in Cn since it becomes a chord in Cn too. Similarly
there is no chord in Cm between two vertices belonging to two adjacent branch
sets, say Bi and Bi+1, in Cn since we select exactly one vertex each from Bi,i+1

and Bi+1,i. Thus if there exists an i with condition Bi,i−1 ∩Bi,i+1 = ∅, then we
get m > n. Otherwise m = n.

Now suppose C is an induced cycle containing B0, B1 and B2 as consecutive
vertices. Clearly C can be either C3 or C4 since RG is a cocomparability graph.
Assume it is a C3. Then {B0, B1, B2} induces C. By the discussion in the previous
paragraph, if B1,0 ∩B1,2 = ∅, then there exists a bigger induced cycle Cm in G.
The only possible bigger induced cycle is a C4 which contradicts the fact that
two vertices of an induced C4 resides inside a branch set. Now assume C is a C4,
that is {B0, B1, B2, B3} is an induced C4. By the first step, if B1,0 ∩ B1,2 = ∅,
then there exists a bigger induced cycle Cm in G, m > 4. This is a contradiction.

Thus by picking bi ∈ Bi,i−1 ∩ Bi,i+1 (0 ≤ i ≤ k − 1), we get the an induced
k-cycle in G with bi ∈ Bi.

Proof of Claim 3: First we need to prove the following sub-claims.

(3.i) If B0, B1, B2 induce a triangle in RG then Bi,i−1 = Bi,i+1 (0 ≤ i ≤ 2) where
addition and subtraction are modulo 3 and hence the set B0,1 ∪B1,2 ∪B2,0

induces a clique in G.
Proof: Using Claim 2, choose the vertices b0 ∈ B0,1 ∩B0,2, b1 ∈ B1,0 ∩ B1,2

and b2 ∈ B2,0∩B2,1. Clearly {b0, b1, b2} induces a triangle. Let i = 1 without
loss of generality. Assume B1,0 6= B1,2. Let B1,0 \ B1,2 6= ∅ without loss of
generality. Take a vertex b′1 ∈ B1,0 \ B1,2. Since B1,0 ∪ B0,1 is a clique, b′1
is adjacent to b0 and b1. Moreover since b′1 /∈ B1,2, it is not adjacent to
b2. Hence {b0, b1, b2, b′1} induces a diamond with the diamond-diagonal b0b1
between B0 and B1 which is a contradiction. �

(3.ii) If {b0, b1, b2, b3} is an induced C4 in G, then {B0, B1, B2, B3} is an induced
C4 in RG, where for each i, Bi is the branch set containing bi.
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Proof: By the definition of RG, it is clear that the branch sets B0, B1, B2, B3

are all distinct and B0B1, B1B2, B2B3, B1B3 are edges in RG. Assume that
{B0, B1, B2, B3} is not an induced C4. Without loss of generality, if B0B2 is
an edge in RG, then RG has a triangle {B0, B1, B2}. By the sub-claim (3.i),
B0,1 = B0,2 and B2,0 = B2,1. Hence b0 ∈ B0,2 and b2 ∈ B2,0. By Claim 1,
b0b2 edge also exists in G which contradicts the fact that {b0, b1, b2, b3} is an
induced C4. Hence {B0, B1, B2, B3} is also an induced C4. �

(3.iii) Every edge of a triangle in RG is also part of an induced C4 in RG.
Proof: By the minimality ofRG, any edge is contracted if the resulting branch
set does not contain two vertices of an induced C4 of G. Thus if there exists
a triangle in RG, every pair of branch sets constituting the triangle contains
two vertices of an induced C4 of G. Also by the sub-claim (3.ii), each such
pair of branch sets should be adjacent vertices of an induced C4 of RG. Hence
the statement. �

(3.iv) RG is a triangle-free.
Proof: By the previous sub-claim, if there exists a triangle R3 in RG induced
by the set {B0, B1, B2}, each edge of R3 will also be part of an induced C4

of RG. Consider an induced subgraph RM of RG with minimum number of
vertices such that it contains V (R3) and branch sets corresponding to the
induced 4-cycles sharing edge with R3 (Figure 4). Each induced C4 sharing
edge BiBi+1 is denoted as {Bi, Bi+1, Bi+1′ , Bi′′} where i ∈ {0, 1, 2} and
addition is modulo 3. We do not claim the adjacencies or non-adjacencies
among the pair {Bi′ , Bi′′}. Clearly any vertex in the set Bi′′ (respectively
Bi′) is non-adjacent to the a vertex in Bi+1 (respectively Bi+2) since they
are non adjacent vertices of an induced C4. Similarly any vertex in the set
Bi′′ (respectively Bi′) is non-adjacent to the a vertex in Bi+2 (respectively
Bi+1) since otherwise it causes the existence of a diamond diagonal across
two branch sets. For any i, if Bi′ 6= Bi′′ , then Bi′ must be non-adjacent to
Bi+1′ and Bi′′ must be non-adjacent to Bi+2′′ since we consider the minimal
graph RM .
Now in the minimal graph RM , if Bi′ 6= Bi′′ for all i ∈ {0, 1, 2}, then
there exists an asteroidal triple {B0′ , B1′ , B2′} in RM (hence in RG) which
contradicts the fact that RG is a cocomparability graph. If exactly two such
pairs are unequal, without loss of generality B0′ 6= B0′′ and B2′ 6= B2′′ , then
there exists a 5-cycle induced by the set {B0′′ , B0, B2, B2′ , B1′} in RM (hence
in RG) which is a contradiction. If exactly one such pair is unequal, without
loss of generality B0′ 6= B0′′ , then there exists the same 5-cycle in RM which
is again a contradiction. If all such pairs are equal, then the set {B0′ , B1′ , B2′}
induces a triangle. As per Sub-claim (3.i), B0′,1′ ∪ B1′,2′ ∪ B2′,0′ induces a
clique. Similarly B0,1 ∪ B1,2 ∪ B2,0 also induces a clique. For i ∈ {0, 1, 2},
choose the vertices bi ∈ Bi,i′ ∩ Bi,i+1 which is nonempty by Claim (2) and
bi′ ∈ Bi′,i ∩ Bi′,i+1′ which is also nonempty by Claim (2). One can verify
that G[{b0, b1, b2, b0′ , b1′ , b2′}] is an induced C6 in G which is a contradiction
since G satisfies the conditions of Theorem 1. Hence RG is triangle free. �

Thus by the above sub-claim, RG is a triangle-free graph. Also RG contains
no bigger induced odd cycles since it is a cocomparability graph. Thus RG is



18 S. K. Pallathumadam and D. Rajendraprasad

a bipartite graph and hence a comparability graph. RG is also a permutation
graph since it is both cocomparability and comparability graph [26]. Hence the
claim.

B0

B2 B1

Bo′ Bo′′

B1′

B1′′

B2′′

B2′

Fig. 4: Minimal graph RM having a C3 with each edge part of an induced C4.

We relabeled the branch sets of the bipartite permutation graph RG in sub-
section 2.2. The following two lemmas are relevant to this labeling.

Lemma 5 Statement : For any two branch sets Bi, Bj of the same parity if
i < j, then Bi ≺σ Bj.

Proof. Every branch set of RG is a connected graph since every edge contraction
towards the formation of RG assures connectivity. Suppose ∃x ∈ Bi and ∃y ∈ Bj

such that y ≺σ x. Then any path in G[Bi] from the leftmost vertex, say z, of
Bi to x does not contain a vertex from the closed neighborhood of y. Hence the
triple (z, y, x) is a forbidden triple in σ which is a contradiction by Lemma 2.

Lemma 8. The relabeling of V (RG) respects the adjacency property.

Proof. We know that σRG
is an umbrella-free ordering. Moreover, the relabeling

ensures that the labels in each part of RG inherit the order of σ. In order to
prove the adjacency property of the relabeling of V (RG), we assume that there
are three branch sets Bj , Bk, Bl (j < k < l) of the same parity and a fourth
branch set Bi of the opposite parity adjacent to Bj and Bl, but not Bk. Then

either
(

Bi ≺σRG
Bk ≺σRG

Bl

)

or
(

Bj ≺σRG
Bk ≺σRG

Bi

)

forms an umbrella

which contradicts the umbrella-freeness of σRG
.

A.2 Step 2. Interval representations of branch-sets of RG

The closure of a branch set Bi of RG is the set B∗

i = Bi∪{Bj,i : BiBj ∈ E(RG)}.
That is, B∗

i consists of all the vertices in Bi together with their neighbors in G.
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In order to fit together interval representations of the individual branch-sets,
it turns out to be necessary to start with interval representations for the closure
of each branch-set. We also need these interval representations to satisfy the
properties listed in the following lemma.

Lemma 6 Statement: For each branch set Bi of RG, G[B∗

i ] is an interval graph.
Moreover, G[B∗

i ] has an interval representation I∗

i satisfying the following prop-
erties.

(i) For all x, y ∈ B∗

i , we have the interval for x to the left of interval for y if
and only if x ≺P y.

(ii) For each neighbor Bj of Bi, all the intervals corresponding to the vertices in
Bj,i are point intervals at a point pj,i.

(iii) If Bj and Bk are two neighbors of Bi such that j < k, then the point pj,i is
to the left of the point pk,i in I∗

i .

Proof. By Lemma 4.3, RG is a bipartite permutation graph. If G[B∗

i ] contains an
induced C4, then by Lemma 4.(3.ii) (sub-claim in Appendix A), RG contains an
induced C4 in the closed neighborhood ofBi. But since RG is bipartite, the closed
neighborhood of any vertex is a star. Hence G[B∗

i ] is a C4-free cocomparability
graph and thus an interval graph [17].

(i): Let PG(V (G),≺P ) be the poset assumed in Algorithm 1 and P ∗

i = (B∗

i ,≺
∗

i )
be the subposet of PG induced on B∗

i . Clearly P ∗

i is (2+2)-free since G[B∗

i ] is C4-
free. Hence P ∗

i is an interval order (Theorem 3). Pick any interval representation
of the interval order P ∗

i and consider it as an interval representation I∗

i for the
interval graph G[B∗

i ]. Thus if Ix is to the left of Iy in I∗

i , that is Ix ≺I
∗

i
Iy, then

x ≺∗

i y and hence x ≺P y. Similarly, if x ≺P y, then x ≺∗

i y and hence Ix ≺I∗

i
Iy .

(ii): By Lemma 4.1, Bi,j ∪Bj,i is a clique. As the vertices corresponding to the
clique share a common point in the interval representation I∗

i , there exists a
point pj,i common to all the intervals corresponding to the vertices in the set
Bj,i ∪ Bi,j . The point pj,i is not contained in an interval corresponding to any
other vertex in Bi since they are non-adjacent to the vertices in Bj,i. Since the
vertices in Bj,i have no neighbors in G[B∗

i ] other than Bj,i ∪Bi,j , we can shrink
all the intervals corresponding to them to the single point pj,i in I∗

i .

(iii): Since j and k have the same parity and j < k, Lemma 5 guarantees that
∀x ∈ Bj , ∀y ∈ Bk, x ≺σ y. Since σ is the linear extension of PG and x is non-
adjacent to y in G, x ≺P y which also implies that x ≺∗

i y. Thus the point
intervals at pj,i is to the left of the point intervals at pk,i in I∗

i .

We remove the intervals other than those corresponding to the vertices of Bi

from I∗

i to get an interval representation Ii of G[Bi]. But we retain the location
of the point pj,i corresponding to each neighbor Bj of Bi.
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A.3 Step 3. B0-VPG representation of G

In this final step, we draw a B0-VPG representationD ofG by combining interval
representations Ii of each Bi in V (RG) and a B0-VPG representation of RG.

The drawing procedure is rewritten here to maintain continuity for readers.
Let e and o respectively (with further subscripts if needed) denote the even and
odd indices of the branch sets of RG.

(i) For each odd-indexed branch set Bo, Io is drawn vertically from the point
(o, (e1 − 0.5)) to (o, (e2 + 0.5)) where Be1 and Be2 are the leftmost and
rightmost neighbors of Bo in σRG

.
(ii) Stretch or shrink the intervals in each vertical interval representation Io

without changing their intersection pattern, so that for each neighbor Be of
Bo, the point pe,o is at (o, e). This can be done since the intersection pattern
of an interval representation with n intervals is solely determined by the
order of the corresponding 2n endpoints.

(iii) For each even-indexed branch set Be, Ie is drawn horizontally from the
point ((o1−0.5), e) to ((o2+0.5), e) where Bo1 and Bo2 are the leftmost and
rightmost neighbors of Be in σRG

.
(iv) Stretch or shrink the intervals in each horizontal interval representation Ie

without changing their intersection pattern, so that for each neighbor Bo of
Be, the point po,e is at (o, e).

Proposition 1 Statement: The B0-VPG representation D is precisely a B0-VPG
representation of the cocomparability graph G.

Proof. We need to verify the pairwise relationships of G in D. The adjacency
and non-adjacency among the vertices inside each branch set Bi are guaranteed
since we use the interval representation Ii in D.

For two adjacent branch sets Bo and Be, the points po,e and pe,o coincide at
(o, e). Since Bo,e ∪Be,o forms a clique in G (Lemma 4.1), we need to show that
the corresponding paths share a common point in D. The point po,e (respectively
pe,o) is the common point of the intervals corresponding to the vertices in Bo,e

(respectively Be,o). Since both these two points fall at location (o, e) in the
plane, all the paths corresponding to vertices in Bo,e ∪ Be,o have a common
intersection. If two vertices x ∈ Bo and y ∈ Be are non-adjacent, then the
intervals Ix ∈ Io, Iy ∈ Ie satisfy either pe,o /∈ Ix or po,e /∈ Iy or both. Thus Ix
and Iy do not touch each other in D.

In D, if we consider each Ii as a single path, then we can use the adjacency
property to verify that we get a B0-VPG representation of RG. Hence the non-
adjacencies of the two vertices belonging to two non-adjacent branch sets of RG

are maintained in D.

This completes the proof of Theorem 1 since we were able to construct a B0-
VPG representationD for the cocomparability graph G satisfying the conditions
of Theorem 1.
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