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Abstract
The crossing number of a graph G is the minimum number of edge crossings over all
drawings of G in the plane. A graph G is k-crossing-critical if its crossing number is
at least k, but if we remove any edge of G, its crossing number drops below k. There
are examples of k-crossing-critical graphs that do not have drawings with exactly k
crossings. Richter and Thomassen proved in 1993 that if G is k-crossing-critical, then
its crossing number is at most 2.5 k + 16. We improve this bound to 2k + 8

√
k + 47.
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1 Introduction

The crossing number cr(G) of a graph G is the minimum number of edge crossings
over all drawings of G in the plane. In the optimal drawing of G, crossings are not
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necessarily distributed uniformly on the edges. Some edges can bemore “responsible”
for the crossing number than others. For any positive integer k, there exists a graph
G whose crossing number is k, but it has an edge e such that G − e is planar. On the
other hand, Richter and Thomassen [6, Sect. 3] conjectured that if cr(G) = k, then
G contains an edge e such that cr (G − e) ≥ k − c

√
k for some constant c. They

observed that this bound would be optimal, as shown, e.g., by the graph K3,n . They
managed to prove a much weaker bound, namely, if cr(G) = k, then G contains an
edge e such that cr (G − e) ≥ 2k/5 − 8.

A graph G is k-crossing-critical if cr(G) ≥ k, but cr (G − e) < k for any edge
e of G. The structure and properties of crossing-critical graphs are fundamental in
the study of crossing numbers. It is easy to describe 1-crossing-critical graphs, and
there is an almost complete description of 2-crossing-critical graphs [3]. For k > 2,
a description of k-crossing-critical graphs seems hopeless at the moment. It has been
proven recently, that the bounded maximum degree conjecture for k-crossing-critical
graphs holds for k ≤ 12 and does not hold for k > 12 [2]. More precisely, there is a
constant D with the property that for every k ≤ 12, every k-crossing-critical graph has
maximum degree at most D, and for every k > 12, d ≥ 1, there is a k-crossing-critical
graph with maximum degree at least d.

We rephrase the result and conjecture of Richter and Thomassen [6] as
follows. They conjectured that if G is k-crossing-critical, then cr(G) ≤ k + c′√k
for some c′ > 0 and this bound would be optimal. They proved that if G is k-crossing-
critical, then cr(G) ≤ 2.5 k + 16. This result has been improved in two special cases.
Lomelí and Salazar [5] proved that for any k there is an n(k) such that if G is k-
crossing-critical and has at least n(k) vertices, then cr(G) ≤ 2k + 23. Salazar [7]
proved that if G is k-crossing-critical and all vertices of G have degree at least 4,
then cr(G) ≤ 2k + 35. It is an easy consequence of the Crossing Lemma [1] that if
the average degree in a k-crossing-critical graph is large, then its crossing number is
close to k [4]. That is, if G is k-crossing critical and it has at least cn edges, where
c ≥ 7, then cr(G) ≤ kc2/(c2 − 29). In this note, we obtain a general improvement.

Theorem 1.1 For any k > 0, if G is a k-crossing-critical multigraph, then cr(G) ≤
2k + 8

√
k + 47.

We need a few definitions and introduce now several parameters for the proof. We
also list them at the end of the paper.

Let G be a graph. If C is a cycle of G and v is a vertex of C , then we call the pair
(C, v) the cycle C with special vertex v. The special vertex is meant to be a vertex
with large degree. When it is clear from the context, which vertex is the special one,
we just write C instead of (C, v). Suppose C is a cycle with special vertex v. Let x
be a vertex of C . An edge, adjacent to x but not in C , is hanging from x in short.
Let l(C) = l(C, v) be the length of C , that is, the number of its edges. For any ver-
tex x , let d(x) denote the degree of x . Let h(C) = h(C, v) = ∑

u∈C,u �=v(d(u) − 2),
that is, the total number of hanging edges from all non-special vertices of C (with
multiplicity). A set of edges is independent if no two of them have a common endver-
tex.
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2 The Proof of Richter and Thomassen

In [6], the most important tool in the proof was the following technical result. In this
section we review and analyze its proof. The algorithmic argument recursively finds
an induced cycle C such that h(C) is small.

Theorem 2.1 ([6]) Let H be a simple graph with minimum degree at least 3. Assume
that H has a set E of t edges such that H − E is planar. Then H has an induced cycle
K with special vertex v such that h(K ) ≤ t + 36.

Proof The proof is by induction on t . The induction step can be considered as a process,
which constructs a graph H∗ from the graph H , and a cycle K of H , either directly,
or from a cycle K ∗ in H∗. For convenience, for any planar graph H , define H∗ = ∅.
In the rest of the paper we refer to this as the Richter–Thomassen procedure. The
statement of Theorem 2.1 for t = 0 is the following.

Lemma 2.2 ([6]) Let H bea simple planar graphwithminimumdegreeat least3. Then
H has an induced cycle K with special vertex v such that l(K ) ≤ 5 and h(K ) ≤ 36.

Here we omit the proof of Lemma 2.2. Suppose now that t > 0 and we have already
shown Theorem 2.1 for smaller values of t . Let H be a simple graph with minimum
degree at least 3. Assume that H has a set E of t edges such that H − E is planar and
let e = uw ∈ E . Let H ′ = H − e. We distinguish several cases.

1. H ′ has no vertex of degree 2. By the induction hypothesis, H ′ has a cycle K ∗
with a special vertex v such that h(K ∗) ≤ t + 35. In H , if e is not a chord of K ∗,
then K = K ∗ with the same special vertex satisfying the conditions for H . Let
H∗ = H ′. If e is a chord of K ∗, then K ∗ + e determines two cycles, and it is
easy to see that either one satisfies the conditions. So, let K be one of them. If K
contains v, then v remains the special vertex. If K does not contain v, then we can
choose the special vertex of K arbitrarily. Let H∗ = H ′.
2. H ′ has a vertex of degree 2. Clearly, only u and w can have degree 2. Suppress
vertices of degree 2. That is, for each vertex of degree 2, remove the vertex and
connect its neighbors by an edge. Let H ′′ be the resulting graph. It can have at
most two sets of parallel edges.

2.1. H ′′ has no parallel edges. By the induction hypothesis, H ′′ contains a
cycle K ∗ with a special vertex v such that h(K ∗) ≤ t + 35. It corresponds to
a cycle K ′ in H . Let H∗ = H ′′.

2.1.1. The edge e is not incident with K ′. In this case, K = K ′ satisfies
the conditions, with the same special vertex as H∗.
2.1.2. The edge e has exactly one endvertex on K ′. In this case, let K = K ′
with the same special vertex. Now h(K ) = h(K ∗) + 1 ≤ t + 36 and we
are done.
2.1.3. The edge e has both endvertices on K ′. Now, just like in case 1.,
K ′ + e determines two cycles and it is easy to see that either one satisfies
the conditions. If the new cycle contains v, the special vertex, then it will
remain the special vertex; if not, then we can choose the special vertex
arbitrarily.
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2.2. H ′′ has one set of parallel edges. Let x and y be the endvertices of the
parallel edges. We can assume that one of the xy edges in H ′′ corresponds to
the path xuy in H and H ′. Clearly, d(u) = 3.

2.2.1. Another xy edge in H ′′ corresponds to the path xwy in H and H ′.
In this case d(u) = d(w) = 3, so for the cycle K = uxw with special
vertex x we have h(K ) ≤ 2 and we are done. Let H∗ = ∅. We do not
define K ∗ in this case.
2.2.2. No xy edge in H ′′ corresponds to the path xwy in H and H ′, and
either d(x) ≤ 37 + t or d(y) ≤ 37 + t . Assume that d(x) ≤ 37 + t , the
other case is treated analogously. Since there were at least two xy edges
in H ′′, H contains the edge xy. For the cycle K = uxy, with special
vertex y, we have h(K ) ≤ 35 + t + 1, so we are done. Let H∗ = ∅.
2.2.3. No xy edge in H ′′ corresponds to the path xwy in H and H ′,
and both d(x), d(y) > 37 + t . Replace the parallel edges by a single
xy edge in H ′′. In the resulting graph H∗, we can apply the induction
hypothesis and get a cycle K ∗ with special vertex v such that h(K ∗) ≤
35 + t . Now K ∗ cannot contain both x and y and if it contains either
one, then it has to be the special vertex. Therefore, the cycle K in H ,
corresponding to K ∗, with the same special vertex, satisfies the conditions,
since the only edge that can increase h(K ) is e, and e is not a chord
of K .

2.3. H ′′ has two sets of parallel edges, xy and ab say. Now H contains the
edges xy and ab. We can assume by symmetry that H contains the paths xuy
and awb. Also d(u) = d(w) = 3 in H .

2.3.1. At least one of a, b, x, y has degree at most 37 + t in H . Assume
that d(x) ≤ 37 + t , the other cases are treated analogously. For the cycle
K = uxy with special vertex y, we have h(K ) ≤ 35 + t + 1, so we are
done. Let H∗ = ∅.
2.3.2. d(x), d(y), d(a), d(b) > 37 + t . Replace the parallel edges by
single edges xy and ab in H ′′. In the resulting graph H∗, we can apply the
induction hypothesis and get a cycle K ∗ with special vertex v such that
h(K ∗) ≤ 35 + t . However, K ∗ can contain at most one of x , y, a, and b,
and if it contains one, then it has to be the special vertex. Therefore, the
cycle K in H , corresponding to K ∗, with the same special vertex satisfies
the conditions.

It is clear from the procedure that K does not have a chord in H since we always
choose K as a minimal cycle. This finishes the proof of Theorem 2.1. 
�

3 Proof of Theorem 1.1

Themain idea in the proof of Richter and Thomassen [6] is the following. Suppose that
G is k-crossing-critical. Then it has at most k edges whose removal makes G planar.
Then by Theorem 2.1, we find a cycleC with special vertex v such that h(C) ≤ k+36.
Let e be an edge of C adjacent to v. We can draw G − e with at most k − 1 crossings.
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Now we add the edge e, along C − e, on the “better” side. We get additional crossings
from the crossings on C − e and from the hanging edges, and we can bound both.

Our contribution is the following. Take a “minimal” set of edges, whose removal
makes G planar. Clearly, this set would contain at most k edges. However, we have
to define “minimal” in a slightly more complicated way, but still our set contains at
most k+√

k edges. We carefully analyze the proof of Richter and Thomassen, extend
it with some operations, and find a cycle C with special vertex v such that (roughly)
l(C) + h(C)/2 ≤ k + 6

√
k. Now, do the redrawing step. If h(C) or the number of

crossings on C − e is small, then we get an improvement immediately. If both of them
are large, then l(C) is much smaller than the number of crossings on C − e. But in
this case, we can remove the edges of C , and get rid of many crossings. This way, we
can get a bound on the “minimal” set of edges whose removal makes G planar.

As we will see, for the proof we can assume that G is simple and all vertices have
degree at least 3. But if wewant to prove a better bound, say, cr(G) ≤ (2−ε) k+o(k),
thenwe cannot prove that the result for simple graphs implies the result formultigraphs.
Therefore, the whole proof collapses. Moreover, even if we could assume without loss
of generality thatG is simple, we still cannot go below the constant 2 with our method.
We cannot rule out the possibility that all (or most of the) k−1 crossings are onC −e.

Proof of Theorem 1.1 Suppose that G is k-crossing-critical. Just like in the paper of
Richter and Thomassen [6], we can assume that G is simple and all vertices have
degree at least 3. We sketch the argument.

IfG has an isolated vertex, thenwe can remove it fromG. Suppose that a vertex v of
G has degree 1. Then cr(G) = cr (G−v), contradicting crossing criticality. Suppose
now that v has degree 2. We can suppress v (remove it and connect its neighbors by an
edge). The resulting (multi)graph is still k-crossing-critical and has the same crossing
number as G. Clearly, G cannot contain loops, as adding or removing a loop does not
change the crossing number. Finally, suppose that e and f are parallel edges, both
connecting x and y. Since G is k-crossing-critical, we have cr (G − e) ≤ k − 1. Take
a drawing of the graph G−e with at most k−1 crossings. Add the edge e, drawn very
close to f . The obtained drawing of G has at most 2k − 2 crossings, consequently
cr(G) ≤ 2k − 2 < 2k + 6

√
k + 47 and we are done. So, we assume in the sequel that

G is simple and all vertices have degree at least 3.
Let k′ be the smallest integer with the property that we can remove k′ edges from

G so that the remaining graph is planar. Define the function f (x, y) = x
√
k + y. Let

(t, t ′) be the pair of numbers that minimizes the function f (t, t ′) = √
kt + t ′ subject

to the following property: There exists a set E of t edges such that G − E is planar,
and the set E contains at most t ′ independent edges. In the next lemma, (i) is from [6];
we repeat it here for completeness.

Lemma 3.1 The following two statements hold: (i) k′ ≤ k and (ii) t ≤ k′ + √
k.

Proof (i) SinceG is k-crossing-critical,G−e can be drawnwith atmost k−1 crossings
for any edge e. Remove one of the edges from each crossing in such a drawing. We
removed from G at most k edges in total and got a planar graph. (ii) Let E ′ be a
set of k′ edges in G such that G − E ′ is planar. Suppose that E ′ contains at most
k′′ independent edges. Now k′′ ≤ k′. By the choice of (t, t ′), f (t, t ′) ≤ f (k′, k′′).
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Consequently, t
√
k ≤ t

√
k + t ′ = f (t, t ′) ≤ f (k′, k′′) ≤ k′√k + k′. Therefore,

t ≤ k′ + k′/
√
k ≤ k′ + √

k by part (i). 
�
Now set E = {e1, e2, . . . , et } ⊆ E(G), where E contains at most t ′ independent

edges and G − E is planar. Apply the Richter–Thomassen procedure recursively
starting with H0 = G. We obtain a sequence of graphs H0, H1, . . . , Hs , s ≤ t , such
that for 0 ≤ i ≤ s − 1, H∗

i = Hi+1, and H∗
s = ∅. The procedure stops with graph

Hs , where we obtain a cycle Cs either directly, in cases 2.2.1, 2.2.2, and 2.3.1, or
by Lemma 2.2, when Hs is planar. In all cases, l(Cs) ≤ 5. Following the procedure
again, we also obtain cycles Cs−1, . . . ,C0 of Hs−1, . . . , H0, respectively, such that
for 0 ≤ i ≤ s − 1, C∗

i = Ci+1. Let C0 = C with special vertex v.

Lemma 3.2 There is a cycle K of G such that l(K ) + h(K )/2 ≤ t + 7
√
k + 48.

Proof The cycle K will be either C , or a slightly modified version of C . Recall that
C is an induced cycle so it does not have a chord in G. Consider the moment of the
procedure when we get cycle C . We get it either directly, when we apply Lemma 2.2,
and in cases 2.2.1, 2.2.2, or 2.3.1, or we get it from C∗. In the latter case, all hanging
edges ofC correspond to a hanging edge ofC∗, with the possible exception of e = uw.
Therefore, if we get a new hanging edge e, then e ∈ E . Taking into account the initial
cases in the procedure, that is, when we apply Lemma 2.2, or we have cases 2.2.1,
2.2.2, or 2.3.1, we get the following easy observations. We omit the proofs.

Observation 3.3 (i) All but at most 36 edges of G−C adjacent to a non-special vertex
of C are in E.

(ii) For all but at most four non-special vertices z′ of C, all edges of G − C incident
to z′ are in E.

Suppose that l(C) > t ′ + 6. Consider t ′ + 5 consecutive vertices on C , none of them
being the special vertex v. ByObservation 3.3 (ii), for at least t ′+1 of them, all hanging
edges are in E . Consider one of these hanging edges at each of these t ′ +1 vertices. By
the definition of t ′, t ′ > 0 and these t ′ + 1 ≥ 2 edges cannot be independent: at least
two of them have a common endvertex, which is not on C . Suppose that x, y ∈ C ,
z /∈ C , xz, yz ∈ E . Let a be the xy arc (path) of C , which does not contain the special
vertex v. Take two consecutive neighbors of z in a. Assume for simplicity, that they
are x and y. Let the cycle (C ′, z) be formed by the arc a of C , together with the path
xzy. See Fig. 1. The cycle C ′ does not have a chord in G. We have l(C ′) ≤ t ′ + 6,
h(C ′) ≤ h(C). The edges zx and zy are the only new hanging edges of C ′ from a
non-special vertex. Theymight not be in E , therefore, the statement of Observation 3.3
holds in a slightly weaker form.

Observation 3.4 (i) All but at most 38 edges of G − C ′ adjacent to a non-special
vertex of C ′ are in E.

(ii) For all but at most six non-special vertices z′ of C ′, all edges of G − C ′ incident
to z′ are in E.

Let cycle K = C , if l(C) ≤ t ′ + 6, and let K = C ′, if l(C) > t ′ + 6. In both cases,
for the rest of the proof, let v denote the special vertex of K . Let h = h(K ), l = l(K ).
We have

l ≤ t ′ + 6. (1)
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z

x

y

v

C C’

Fig. 1 Cycles C and C ′

The cycle K does not have a chord. In particular, none of e1, e2, . . . , et can be a chord
of K . Now we partition E into three sets, E = Ep ∪ Eq ∪ Em , where Ep is the subset
of edges of E that have exactly one endvertex on K (these are the hanging edges in E),
Eq = E ∩ K , and Em is the subset of edges of E that do not have an endvertex on K .
Let p = |Ep|, q = |Eq |,m = |Em |. Let p′ denote the number of edges of Ep hanging
from the special vertex v. By definition,

t = p + q + m (2)

and p ≥ p′. It follows from Observations 3.3 (i) and 3.4 (i) that

h ≥ p − p′ ≥ h − 38. (3)

Therefore,

h + q + m ≤ p + q + m + 38 = t + 38.

Since all vertices have degree at least 3, and K does not have a chord, h ≥ l − 1.

Now, at each vertex x of K , where all hanging edges belong to Ep, take one such
edge. The set of these edges is E ′. By Observations 3.3 (ii) and 3.4 (ii), |E ′| ≥ l − 7.
See Fig. 2. Let F = Ep ∪E(K )∪Em −E ′ where E(K ) is the set of edges of K . Since
F ∪ E ′ ⊇ E , G ′ = G − (F ∪ E ′) is a planar graph. Let G ′′ = G ′ ∪ E ′ = G − F . In
G ′′, each edge of E ′ has an endvertex of degree one. Therefore, we can add all edges
of E ′ to G ′ without losing planarity. Consequently, the graph G ′′ = G ′ ∪ E ′ = G − F
is planar. Since |E ′| ≥ l − 7, we have |F | = |Ep| + |E(K )| + |Em | − |E ′| ≤
p + l + m − (l − 7) = p + 7 + m ≤ t + 7 by (2). That is,

|F | ≤ t + 7. (4)

Let F ′ ⊆ F be a maximal set of independent edges in F . We have |F ′| = |F ′ ∩ Em |+
|F ′ ∩ Ep| + |F ′ ∩ E(K )|. The edges in F ′ ∩ Em are disjoint from K and clearly
|F ′ ∩ Em | ≤ |Em | = m. The edges in |F ′ ∩ Ep| have exactly one vertex on K . There
are p − p′ hanging edges of K from non-special vertices, and E ′ contains at least
l −7 of them, so F ′ contains at most p− p′ − (l −7) hanging edges from non-special
vertices. Clearly, F ′ can contain at most one hanging edge from the special vertex v.
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v

K

E

Fig. 2 The edge set E ′

Consequently, |F ′ ∩ Ep| ≤ p − p′ − (l − 7) + 1. Finally, each edge in |F ′ ∩ E(K )|
“occupies” two vertices of K . Summarizing,

|F ′| = |F ′ ∩ Em | + |F ′ ∩ Ep| + |F ′ ∩ E(K )|
≤ |F ′ ∩ Em | + |F ′ ∩ Ep| + l − |F ′ ∩ Ep|

2

≤ m + p − p′ − (l − 7) + 1 + l − (p − p′ − l + 8)

2
= p − p′

2
+ 4 + m.

By the choice of the pair (t, t ′), t
√
k + t ′ ≤ |F |√k + |F ′|. Therefore,

p − p′

2
+ 4 + m ≥ |F ′| ≥ t

√
k + t ′ − |F |√k ≥ t ′ − 7

√
k,

using (4). Now by (3) we obtain h/2 + 4 + m ≥ (p − p′)/2 + 4 + m ≥ t ′ − 7
√
k.

Therefore, h/2+m ≥ t ′ − 4− 7
√
k ≥ l − 10− 7

√
k by (1). Summarizing, we have

h + m ≤ t + 38,
h

2
+ m ≥ l − 10 − 7

√
k,

which implies

m ≤ t − h + 38,
h

2
+ t − h + 38 ≥ l − 10 − 7

√
k,

and finally t + 7
√
k + 48 ≥ l + h/2. This concludes the proof of Lemma 3.2. 
�

Now we can finish the proof of Theorem 1.1. By Lemma 3.2, we have a cycle K in
G with special vertex v such that h(K )/2+ l(K ) ≤ t +7

√
k+48. Let e be an edge of

K adjacent to v. Since G was k-crossing-critical, the graph G − e can be drawn with
at most k − 1 crossings. Let us consider such a drawing D. Let h = h(K ), l = l(K ).
Suppose the path K − e has cr crossings in D. Remove the edges of K from the
drawing, and one edge from each crossing not on K − e. Together with e, we removed
at most k + l − cr edges from G to get a planar graph. Therefore, l + k − cr ≥ k′.
Combining this with Lemma 3.1 (ii) we have

l + k − cr ≥ t − √
k.
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v

e
K

Fig. 3 Adding the missing edge e

Consequently, l + k − cr ≥ t − √
k ≥ l + h/2 − 48 − 8

√
k by Lemma 3.2. That is,

k + 8
√
k + 48 ≥ cr + h

2
.

Consider the drawing D of G − e. We can add the missing edge e drawn along the
path K − e on either side. See Fig. 3. The two possibilities together create at most
h + 2cr crossings. Choose the one which creates fewer crossings. That makes at most
h/2 + cr crossings. Since k + 8

√
k + 48 ≥ cr + h/2, we can add e with at most

k + 8
√
k + 48 additional crossings. Hence cr(G) ≤ 2k + 8

√
k + 47. 
�

Notations

Here we give a list of the parameters and their definitions, used in the proof.

k: G is k-crossing-critical.
k′: the smallest integer with the property that we can remove k′ edges fromG

so that the remaining graph is planar.
(t, t ′): the pair of numbers that minimizes the function f (t, t ′) = t

√
k + t ′

subject to the following property: There exists a set E of t edges such
that G − E is planar and the set E contains at most t ′ independent edges.

p = |Ep|: the number of edges in E that have exactly one endvertex on C .
q = |Eq |: the number of edges in E ∩ C .
m = |Em |: the number of edges in E that do not have an endvertex on C .
p′: the number of edges of Ep hanging from the special vertex v of C .
h = h(C): the total number of hanging edges from all non-special vertices of C

(with multiplicity); h(C) = h(C, v) = ∑
u∈C,u �=v(d(u) − 2).

l = l(C): the length of C .
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