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Abstract. The design of digital systems has its mainstay in the elec-
tronic design automation flows which act as crucial instruments to re-
duce the effort to realize complex computing platforms. In this work,
we investigate the possibility of integrating side channel security analy-
ses within the existing FPGA design flow, to provide a feedback to the
hardware designer in a prompt and effective way. To this end, we realize
an analysis framework which detects side channel leakage on the power
consumption side channel at two well established checkpoints in hard-
ware design, i.e., post synthesis and post implementation. We report the
results of the proposed framework when integrated within the commer-
cial Xilinx Vivado design toolchain. As a case study, we employ an open
source SoC running a software version of the AES block cipher and pro-
vide a taxonomy of the side channel information leakage. The reported
results highlight how our approach is able to provide precise insights on
the sources of information leakage in the hardware design at hand. In
particular, we show that the results of the simulations at post synthesis
and post implementation stages provide complementary sets of insights
on the information leakage, which, thanks to our methodology, can be
traced back to architectural components which are the culprits of the
said leakage.

Keywords: Design automation and tools, FPGA design flow, Side chan-
nel analysis

1 Introduction

The Internet-of-Things (IoT) revolution is leading to a tightly connected world
populated by millions of smart devices that, following the edge computing paradigm
of externalize the processing onto leaf computing nodes, are collecting, comput-
ing, and exchanging data streams among them. The pervasiveness of these de-
vices calls for technical means to provide privacy guarantees on the collected and
processed data. This, in turn, points to the use of cryptographic building blocks
to attain the said guarantees in a reliable and provable way.
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Fig. 1. Bird’s-eye view of a hardware design flow enhanced with side channel analysis

A prominent attack avenue for IoT devices is represented by the so-called
Side Channel Attacks (SCAs), which are able to recover the secret key of a
cryptographic primitive exploiting the link between the data being processed by a
computing device and an environmental parameter of the computing device such
as its power consumption, electromagnetic emissions, or time taken to perform
the computation. Indeed, a practical case of SCA being effective against a widely
commercialized IoT device is the one of Philips smart bulbs [11], which were
proven to be vulnerable to Correlation Power Analysis (CPA), in turn allowing
an attacker to exploit them as a foothold to violate the security of home networks,
or as a pawn to lead distributed denial of service attacks.

Digital design flows have been crucial for a long time in order to dominate
the ever increasing complexity and diversity of designing digital devices with ad-
equate performance and efficiency requirements, while fitting timing constraints
imposed by the market. Indeed, they have arguably been one of the most signif-
icant enabling technologies for the IoT revolution, as they allowed to drastically
shorten the time to design new, specialized computing platforms.

A natural consequence of the intrinsic need for security guarantees in IoT
devices is the inclusion of security itself as a design metric. Such an inclusion
points to the need of augmenting the current Electronic Design Automation
(EDA) flows with stages that provide an evaluation of the security of the design
itself with respect to a particular attack class. Concerning the security against
SCAs, a pioneering effort in augmenting the traditional ASIC hardware design
flow as well as in promoting the side channel security assessment as a stan-
dard design metric, was made in [10], where the authors propose a methodology
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to identify a side channel sensitive portion of a circuit and provide a secured
re-implementation of the portion itself employing a SCA-resistant logic style.
Another work in the direction of providing security-oriented features within a
well established EDA flow is the one in [13], where the authors augment an
EDA flow targeting ASIC with a set of modules performing side channel analy-
ses based on the power consumption at the different stages of the EDA flow, i.e.,
synthesis, place-and-route, implementation. The work validates its approach on
the design of an ASIC accelerator for the execution of the Advanced Encryption
Standard (AES) block cipher with a 128-bit cryptographic key (a.k.a. AES-128),
and on an SCA protected S-Box for the PRESENT cipher. A further motivating
point for the need of integrating SCA awareness in the EDA toolchain is rep-
resented by the increasing complexity of the CPUs employed in IoT platforms,
leading to a side channel information leakage which is tightly coupled with the
microarchitectural features of the CPU itself [3, 16].

Contributions. In this work, we tackle the augmentation of an industry-grade
FPGA design flow with a software-only analysis of the side channel vulnerability
of a design. Our intent is to reduce the delay in the feedback loop to the designer
when it comes to the understanding of whether or not a given design may be
vulnerable to power-consumption-based SCAs. Our objective is to augment the
FPGA design flow, as depicted in Figure 1 with side channel security analyses
after the synthesis stage, providing a preliminary analysis, and after the entire
backend of the EDA flow has been run, obtaining a more close-to-deployment
analysis. As a case-study, we employ a full System-On-Chip (SoC) based on
an implementation of the open OpenRISC Instruction Set Architecture (ISA),
which is analyzed when running a software implementation of AES-128. Our
experimental validation highlights the advantages of performing side channel
analyses in both stages, as some of the leaking points detected by each one of
them are not observable by the other. Moreover, our analysis framework allows
the designer to trace back the leakage to the microarchitectural components that
are the source of the said leakage, helping him to effectively remove potential
security issues.

The rest of this manuscript is organized as follows. The proposed enhanced
FPGA design flow to support side channel vulnerability analyses is discussed in
Section 2, considering the augmentation of the widely adopted commercial Xilinx
Vivado toolchain. Section 3 presents a taxonomy of the side channel leakage
detected, employing as a statistical instrument a specific t-test [6] to detect it.
Conclusions and directions for future investigations are drawn in Section 4.

2 Augmenting the Xilinx Vivado FPGA Design Flow

In this section, we detail the augmentation to the hardware design flow to support
the SCA vulnerability analysis considering the power consumption side channel.
The proposed augmentation of the design flow is depicted in Figure 2, and stems
from the typical two stages approach of EDA tools, represented by clear boxes
in the figure. The typical EDA design flow is traditionally split in a set of stages
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Fig. 2. Proposed SCA-aware design flow for FPGA targets. Newly added elements are
depicted as orange blocks, while existing enhanced elements are depicted in yellow

which translate a high-level Hardware Definition Language (HDL) description of
the design into a low-level technology independent description. This description,
which is in the form of a netlist, i.e., a set of elementary components such as
Boolean gates and muxes, is used to run a first pass of functional simulations,
which are able to detect mismatches between the desired design behavior and
the actual one pertaining to incorrectly computed values. The netlist representa-
tion does not yet take into account the actual components of the target platform
which will be realizing the functionalities of the elementary components. The
step following the logic synthesis are the ones of the design implementation and
they take the gate-level netlist and map its components onto the ones available
on the target platform (in the FPGA design flow case) or onto the ones available
with the provided technology library (in an ASIC design flow). After performing
the mapping onto the platform components, the resulting set of design parts
is placed onto the available resources and the inter-component connections are
routed. The outcome of this step is ready to be deployed onto the target FPGA,
after a semantic preserving translation from a post place-and-route netlist onto
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a bitstream file. The post place-and-route netlist, which is output by the im-
plementation passes, can be employed to perform accurate simulations of the
design at hand, as it takes into account the actual components which will be im-
plementing it, together with the signal propagation delays induced by the routed
interconnections. We note that the post implementation synthesis represents the
most accurate netlist in terms of timing, area and power characteristics, while
the post synthesis one provides only an estimates of such metrics, allowing only
an initial coarse grained evaluation of the said metrics.

We augmented the FPGA design flow by adding the analysis to detect the
side channel leakage after both the logic synthesis stage, and the implementation
stage (see Simulation (func) and Simulation (timing) blocks in Figure 2). While
this choice may appear counterintuitive, as the simulations at the post imple-
mentation stage take into account a more accurate circuit model, our findings
(reported in Section 3) show that complementary insights are obtained from pre
and post place-and-route results.

We follow the well established convention of simulating the design at a func-
tional level on the post synthesis netlist, thus obtaining a corresponding Value
Change Dump (VCD) file which represents the switching activity of an ideal
circuit where no signal propagation delays in the wirings are considered. Simi-
larly, following a well established best practice, we perform a complete timing
simulation exploiting the information coming from the place-and-route stages on
the post implementation netlist.

Any FPGA design flow includes a power consumption estimation stage, which
aims at providing to the designer a reasonable estimate of the expected energy
requirements of the circuit (see Power dissipation computation blocks in Fig. 2.
Such a power estimation requires as an input the Switching Activity Interchange
File (SAIF) file, together with the netlist of the design to be simulated. Currently,
the FPGA design flow provided by Xilinx, which is the one we are augmenting,
only yields the average power consumption estimate coming from the switching
activity described in the entire SAIF. While this is sufficient to obtain a reason-
able estimate of the power consumption for functional purposes, a single-valued
average estimate of the behavior of the circuit during the execution of an entire
cryptographic primitive does not provide enough time resolution to assess the
source of a potential side channel leakage.

To this end, we enhanced the power estimation stage, realizing an automated
framework to slice time-wise the SAIF representation of the switching activity
of the circuit executing the entire cryptographic primitive into arbitrarily small
portions. Our framework exploits the availability of the VCD file to perform a
slicing which is synchronous with the clock signal, allowing to obtain a sequence
of SAIF files including the switching activity of the target design during a time
interval of a single clock cycle, or a portion of a clock cycle. The sequence of
obtained SAIF files is then fed to the Xilinx power report tool, which derives
the power consumption of each one of them. Recombining in the appropriate
chronological order the obtained power estimates, we build our simulated power
traces. We chose a time interval of half a clock cycle in our experimentation, i.e.,
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two simulated power samples are collected for each simulated clock cycle.
Starting once the synthetic power traces have been generated by the power

dissipation computation blocks, we realized the power consumption side chan-
nel evaluation stage of the flow which is in charge of assessing the information
leakage of the design (see Power attack resistance evaluation and Information
leakage blocks in Fig. 2). To this end, several statistical tests have been sug-
gested in the public literature, ranging from performing an actual side channel
attack, to leakage model agnostic tests [5, 6].

Since our aim is to be able to provide meaningful suggestions to the designer
on which component may be the cause of an information leakage in a given time
instant, we chose to employ the specific t-test, as proposed in the same work as
its non-specific variant [6]. Our choice of the t-test is mutuated by the absence
of noise in the simulated environment, which allows to employ such a test with-
out implicit assumptions on the distribution of the noise [14]. The specific t-test
partitions in two sets the power traces obtained from the repeated execution of
the cipher primitive at hand with a fixed value of the cryptographic key and dif-
ferent, randomly chosen input plaintexts (encryption primitive) or ciphertexts,
(decryption primitive). The partitioning of the traces is driven by the value of
an intermediate variable in the computation of the primitive itself (e.g., a bit
being asserted or not in the inner state of a block cipher). Once the partition
is completed, a statistical t-test (hence the name) is employed to compare the
average power consumption over each one of the two trace sets, analyzing one
time instant at a time. This results in the computation of as many t statistics
as the time instants in the simulated power traces, which are then evaluated to
affirm or reject the null hypothesis that the average power consumptions of the
traces in the two sets are the same in a given time instant. We note that, while
a high value of a t statistic computed for a given time instant points to a very
likely difference in the behavior of the design being caused by a data dependent
event, this may not directly lead to an exploitable leakage [7], namely due to
false positives such as the ones highlighted in [16]. We note that the proposed
design flow can be easily configured to apply any other evaluation metric differ-
ent from the statistical test chosen in this work.

The Leakage analysis processing block (on the right-hand pane of Fig. 2)
aggregates all the generated information to deliver the side channel behavior of
the circuit under investigation. In particular, we pair the results of the t-test
with the data available from the simulation VCD. Our leakage analysis stage
scans the logical transitions contained in the VCD file, in the time intervals
corresponding to the detection of a possible leakage by the specific t-test. The
leakage analysis stage collects a list of all the signals where a logic transition
matches the partitioning criterion of the t-test and traces back to the signals
the potential leakage, exploiting the information contained in the netlist corre-
sponding to the appropriate EDA flow stage (i.e., the Netlist at post synthesis
or post implementation).

The final result of the analysis provides the designer with a side-by-side signal
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Table 1. Taxonomy of highlighted side channel information leakage. For each identified
information leakage type we associated its observability in the two considered hardware
design flow stages, i.e., post synthesis and post implementation, and one snapshot
reporting an instance of it

Scenario
Leakage Detected

Figure no.
Post synthesis Post implementation

Spreading Signals 3 3 3

Time Shift 3 3 4

Zero Variance (post impl.) 3 5

Signal Domination 3 6

Zero Variance (post synt.) 3 7

Signal Isolation 3 8

waveform and t-test result view, allowing the designer to audit and, if needed,
amend the design on the side channel information leaking components.

3 Experimental Validation

To validate our proposed augmentation of the FPGA design flow, we pick as our
case study the OpenRISC Platform System on Chip (ORPSoC) [8], which imple-
ments the OpenRISC 1000 architectural specification. The ORPSoC features a
single-issue, in-order OpenRISC 1000 CPU with a 5 stages pipeline, and a main
memory module connected to it via a Wishbone compliant bus. We synthesized
the ORPSoC targeting a clock frequency of 50 MHz, and employing a Xilinx Ar-
tix 7 XC7A200 device as our target platform. We employed the Vivado 2017.4
Xilinx toolchain to perform the synthesis and implementation, while obtaining
the switching activity files with Xilinx XSim 2017.4.

The synthesized SoC is running a software implementation of the Advanced
Encryption Standard (AES) symmetric block cipher, employing its variant with
a 128-bit key. The software is obtained compiling a standard-abiding, memory
optimized (S-Box) implementation written in C. We computed the power traces
corresponding to 700 AES executions on independent, uniformly drawn, random
plaintexts while keeping a fixed secret key. The overall data collection took 45
days on 4 servers equipped with legacy Intel Xeon E5620 processors (launched on
2010) clocked at 2.40 GHz with 32 GiB of DDR3. The significant computation
time required is due to the need of restarting the Vivado Report Power tool
each time a power estimate for a SAIF containing the switching activity of half
a clock cycle must be computed. While this computational bottleneck is currently
significant, we still chose to employ the Xilinx Power Report tool as it is currently
the one containing the most reliable characterization of the Xilinx FPGA target
chips. We were able to determine that this current computational bottleneck
can be removed, observing how the computation time is spent by Xilinx Power
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Fig. 3. Spreading Signals information leakage scenario reported in Table 1

Report, via the consolidated Linux time accounting subsytem. Indeed, we found
out that the actual userspace computation load is less than 0.1% of the actual
running time (i.e., ≈ 1 hour), while the 99.9% of the wall-clock time is taken by
reading the input files and by the operating system overhead.

We collected two energy measurements per clock cycle, i.e., at the first and
second half of the target clock period, as the minimum number of samples to
allow the detection of the effects of the network delays introduced in the map
and place-and-route stages on the power consumption, while keeping the com-
putational requirements for the data collection within acceptable range. In our
leakage assessment, we present the result of running a specific t-test with the
parameters suggested in [6]. In particular, we employed the value of the first bit
of the AES cipher state after the first AddRoundKey primitive is computed as the
labeling criterion to partition the collected traces into two sets. We computed
the value of the t statistic point-wise in time for the two set of traces and con-
sidered that the t test rejects the null hypothesis, stating that the means of the
power consumptions of the two sets are not distinguishable if the value of the
t-statistic is below 4.5 as suggested in [6]. This, in turn, implies that, if the t-test
rejects the null hypothesis, there is no detectable side channel leakage with this
amount of measurements with a confidence of 99.99%.

We report in Table 1 the complete taxonomy of the side channel information
leakage emerged from the evaluation of our case study platform, classified ac-
cording to whether post synthesis or post implementation power traces exhibit a
leakage or not. For each identified information leakage scenario, the correspond-
ing figure indexed in Table 1 details a representative example of the class as
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Fig. 4. Time Shift information leakage scenario reported in Table 1

obtained as the output of our tool. For the sake of clarity, we will represent the
outcome of the t-test instead of the t-statistic itself, simply depicting whether,
for a given time instant, the t-test detects potential side channel leakage or not.

Spreading Signals. The first scenario we consider is the one where informa-
tion leakage is detected both on post synthesis traces and post implementation
traces, while the time instants where the leakage is detected on post synthesis
traces are a subset of the ones where a leakage is also detected on post imple-
mentation traces. A practical case of such scenario, reported in Figure 3, allows
us to provide further insight on the reasons behind such a difference. First of all,
our framework traced back the potential leakage origin to a transition on the
ram dat o, lsu dat o signals (two signals involving the storage of the result of
the AddRoundKey primitive by the load-store unit). While the logic transitions
take place exactly on the raising clock edge in post synthesis, leading to a leak-
age in the corresponding (first) half of the clock cycle, the post implementation
simulation shows delayed transitions causing leakage in both clock cycle halves.
This fact confirms that common intuition that taking into account more accu-
rately the network delays will result in a more accurate picture of the exact time
instants where the information leakage takes place.

Time Shift. The Time Shift scenario emerges whenever the t-test reports that
the possible information leakage in the post implementation analysis is shifted
forward in time, with respect to the one detected by the post synthesis analysis.
Analogously to the case of Spreading Signals, we are able to ascribe this fact to
the more accurate evaluation of the network delays allowed by the information
contained in the post implementation netlist. We report an instance of such a
scenario in Figure 4, where a transition from the sensitive value represented by
the output of the AddRoundKey primitive to zero, taking place on the load-data
signal of the load-store unit, gives rise to a leakage which is time-locked to the
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Fig. 5. Zero Variance (on post implementation traces) scenario as in Table 1

first half of the clock cycle in post synthesis simulations, while it appears in the
second half of the clock cycle when post implementation traces are considered.

Zero variance (post impl.). The Zero variance in post implementation traces
is an interesting scenario where we observed a lack of leakage being detected
on post implementation traces, while the post synthesis analysis shows distinct
leakage. An instance of such a scenario is reported in Figure 5, where the leak-
age is caused by the sensitive value transiting on a forwarding path for the first
operand. Indeed, carrying out the side channel leakage analysis on post synthe-
sis traces shows the expected information leakage in the first half of the clock
cycle where the aforementioned transitions take place. By contrast, no leakage
is detected on post implementation traces and the variance of the post imple-
mentation power consumption traces in the instant where leakage is detected
on the post synthesis ones is null. While we cannot ascertain the reason for
such a behaviour of the Xilinx power report output, we posit as a reasonable
justification the fact that the signal routing optimization performed in the place-
and-route stage may bring the power consumption of some signal drivers below
the minimum power simulation resolution. Indeed, such a fact would result in
a net cancellation of the data dependent contribution to the overall power con-
sumption, and the consequent zero variance in the post implementation traces.
This highlights the counterintuitive fact that, despite the higher accuracy of the
design model provided by a post implementation netlist, some information leak-
age may be missed if the analysis is not performed on post synthesis traces too.

Signal domination. Another scenario where an information leakage is detected
only on post synthesis traces, but not on post implementation traces is the Signal
Domination one. Differently from the Zero variance (on post implementation
traces) scenario, in this case the variance of the post implementation simulated
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Fig. 6. Signal Domination example for each one of the side channel information leakage
classes identified in Table 1. We attack the i-th bit of the secret key. Pi, Pj are two
bits of the plaintext, while Ki and Kj are two bits of the secret key

traces is not null, however, no leakage is detected. Figure 6, reports an instance
of this scenario where a transition from zero to the sensitive value constituted
by one byte of the output of the AddRoundKey primitive is taking place on the
dbus o signal, while another transition, from a different output byte of the same
primitive to zero is taking place on the lsu o signal. In the post synthesis power
traces, no interference between the two transitions takes place, as the first one
concludes before the raising edge of the clock signal at the beginning of the
second clock cycle, giving rise to a distinguishable leakage by the t-test. Note
that, in this case, no relation exists between the values of the transition taking
place on lsu o and the partitioning of the traces into two sets exists, as the said
partitioning depends on the values transiting on dbus o. Analyzing the post
implementation traces we have that the t-test fails to detect any leakage, despite
the transition on dbus o is taking place within the same clock cycle. We ascribe
this effect to the delayed transition happening on lsu o, which is likely to be
the dominant factor in the power consumption in the first half of the second
clock cycle. Indeed, such a dominant power consumption caused by an unrelated
value effectively adds a significant amount of noise to an otherwise perfectly
distinguishable information leaking power consumption. Therefore, the signal
domination scenario highlights another significant case where the post synthesis
traces offer a clearer picture of the potential information leakage of the design
with respect to a post implementation analysis.

We note that, in this scenario, a higher number of simulated traces may allow
the t-test to overcome the empasse caused by the additional noise.

Zero variance (in post synthesis traces). This scenario represent the dual
scenario with respect to the Zero variance (in post implementation traces). In
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Fig. 7. Zero Variance (post synt.) example for each one of the side channel information
leakage classes identified in Table 1. We attack the i-th of the secret key and Pi, Pj

are two bits of the plaintext while Ki and Kj are two bits of the secret key

particular, it considers the case where a leakage is detected only in the post im-
plementation traces, where it is not detected in the corresponding time instants
in the post synthesis ones, which have zero variance in the said time instant.
While arguably more expectable than the Zero variance (in post implementa-
tion traces), as the design model provided by the post implementation netlist
is closer to the actual design, this scenario also highlight the need to analyze
the potential information leakage both post synthesis and post implementation.
We report in Figure 7, an instance of such a scenario, which is reported by our
framework when the sensitive value is transiting on the data line of the memory
bus, i.e., ram dat i. Indeed, in this case, it is quite likely that the post synthesis
model of the circuit, which neglects the effects on the power dissipation caused
by the capacitive load of long signal lines underestimates the power required to
charge the memory bus. By contrast, the post implementation traces, leveraging
the more accurate description of the memory bus connections, provide a more
fitting report on the power consumption, which allows the t test to successfully
detect the information leakage.

Signal isolation The signal isolation scenario, where information leakage is
detected only in the analysis of post implementation traces, is essentially the
dual case of the signal domination scenario. An occurrence of this scenario is
reported in Figure 8, where the output signals of two different bytes of the data
bus carrying the second operand into the ALU toggle at the same moment in
the post synthesis simulation, having their value change from zero to a byte of
the output of the AddRoundKey primitive. While the byte contained in rB[i] is
the one actually related to the t-test partitioning criterion, the one in rB[j] is
unrelated to the said criterion. As a result, the post synthesis power simulation
does not yield a detectable leakage, as the relevant power consumption caused by
the transition on rB[i] is shadowed by the unrelated, and at least equally strong
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Fig. 8. Signal Isolation example for each one of the side channel information leakage
classes identified in Table 1. We attack the i-th of the secret key and Pi, Pj are two
bits of the plaintext while Ki and Kj are two bits of the secret key

power consumption due to the transition of rB[j]. Analyzing the result of the
post implementation power simulation we have that, thanks to the more accurate
estimate of the network delays, the aforementioned signal transitions take place
in slightly different time instants, with the information leaking one taking place
in the second half of the clock cycle. As a consequence, the information leaking
power consumption is isolated from the non relevant one. This in turn results in
the t-test detecting leakage in the corresponding time interval.

We note that, similarly to the signal domination scenario, a higher number
of power consumption traces may lead to a detection of the information leakage
during the post synthesis analysis.

Summary. Summing up the results obtained analyzing in detail the taxonomy
of information leakage detected by our approach, we can state the following:

(1) performing a post implementation simulation effectively provides a higher
timing accuracy to the side channel leakage detection. The Spreading Signals
and Time Shift scenarios exemplify the effects of such an increased precision
allowing to detect sequences of leakages.

(2) Performing post synthesis side channel analysis yields complementary in-
sights to the ones provided by post implementation analysis. Indeed the Sig-
nal Domination scenario highlights a potential side channel leakage which
may be visible or hidden depending on the device targeted for implementa-
tion. This in turn may lead a designer, relying only on post implementation
simulations, to ship an IP block that indeed may exhibit a side channel
leakage when implemented on a different target.
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(3) Performing post implementation simulations is still advised as they may
highlight, as expected, side channel leakages which can only be modeled
effectively with accurate timing information on the implemented design.

(4) The current resolution of the power simulation tools in the FPGA design
flows may not be sufficient to highlight all the information leakages via power
consumption, as shown in the Zero variance scenarios.

4 Concluding Remarks

This work presented an augmented FPGA hardware design flow to assess power-
based side channel information leakages. The proposed framework is currently
built on the widely employed commercial Xilinx Vivado toolchain. Starting from
the complete OpenRISC SoC design, running a software implementation of the
AES-128 block cipher as representative use-case, our investigation provides a
complete taxonomy of the side channel information leakage scenarios which are
made evident from a simulation-time side channel evaluation. Our toolchain
augmentation also allows us to trace back the plausible sources of the side channel
information leakage, when employing a specific t-test on an intermediate value
of the algorithm, or any intermediate value specific leakage assessment test. This
feature is achieved through an automated analysis of the value logical transitions
taking place at the same time as the information leakage. The results of our
automated analysis highlight that it is worthwhile to perform a simulated power
analysis both at the post synthesis level (to detect issues with the IP design
which may not be evident unless implemented on a different target device) and
at the post implementation level (to benefit from the network delay modeling).

Currently, the computational requirements for our analysis are significant,
mainly due to the significant overheads (estimated to be greater than three or-
ders of magnitude), imposed by the current lack of a per-cycle power estimation
in the existing EDA flows for FPGA. Since we were able to validate the report
of consistent results with the current Xilinx Vivado toolchain, showcasing the
effectiveness of the augmented toolchain in detecting side channel leakage, we
consider the removal of such a computational bottleneck as a pressing need for
furher developments. Indeed, we maintain that such a performance bottleneck is
removable, as most of the time (> 99.9%) in our current power consumption sim-
ulations is spent in bootstrapping a fresh instance of the power simulator for each
time interval, corresponding to a bootstrap per each sample of a trace. We note
that, as viable alternative to the industry-dependent integration of a per-cycle
power estimation in Xilinx Vivado, the availability of effective power estima-
tion models for open EDA flows such as Symbiflow and Yosys [9, 12, 15] would
allow them to output the desired power simulations in significantly reduced time-
frames. Indeed, such an evolution would further foster a fully auditable design
and side channel security analysis for FPGA targets.

Finally, we foresee the validation of the leakage detection made by our aug-
mented toolchain through comparison with a physical target as an interesting
avenue to be pursued. Indeed, while we confirmed the existence of a potential
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side channel leakage analyzing the values of the logic transitions, practically
gauging the extent of the leaked information and its measurability would allow
a further confirmation of the effectiveness of the methodology itself.
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