Skip to main content

Kilroy Was Here: The First Step Towards Explainability of Neural Networks in Profiled Side-Channel Analysis

  • Conference paper
  • First Online:
Constructive Side-Channel Analysis and Secure Design (COSADE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12244))

Abstract

While several works have explored the application of deep learning for efficient profiled side-channel analysis, explainability, or, in other words, what neural networks learn remains a rather untouched topic. As a first step, this paper explores the Singular Vector Canonical Correlation Analysis (SVCCA) tool to interpret what neural networks learn while training on different side-channel datasets, by concentrating on deep layers of the network. Information from SVCCA can help, to an extent, with several practical problems in a profiled side-channel analysis like portability issue and criteria to choose a number of layers/neurons to fight portability, provide insight on the correct size of training dataset and detect deceptive conditions like over-specialization of networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhasin, S., Jap, D., Chattopadhyay, A., Picek, S., Heuser, A., Ranjan Shrivastwa, R.: Mind the portability: a warriors guide through realistic profiled side-channel analysis. Cryptology ePrint Archive, Report 2019/661 (2019). https://eprint.iacr.org/2019/661

  2. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against Jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  4. Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen, S.: X-DeepSCA: cross-device deep learning side channel attack. In: Proceedings of the 56th Annual Design Automation Conference 2019 on - DAC 2019, vol. 1, pp. 1–6. ACM Press, New York (2019)

    Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  6. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5) (2018). https://doi.org/10.1145/3236009

  7. Hettwer, B., Gehrer, S., Tim, G.: Deep neural network attribution methods for leakage analysis and symmetric key recovery. CoRR, pp. 1–17 (2019)

    Google Scholar 

  8. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptograph. Hardw. Embedded Syst. 2019(3), 148–179 (2019)

    Google Scholar 

  9. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian Institute for Advanced Research) (2009). http://www.cs.toronto.edu/~kriz/cifar.html

  10. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  11. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general characterization in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 145–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1_9

    Chapter  Google Scholar 

  12. Moradi, A., Guilley, S., Heuser, A.: Detecting hidden leakages. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 324–342. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_20

    Chapter  Google Scholar 

  13. Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 5727–5736. Curran Associates, Inc. (2018)

    Google Scholar 

  14. Perin, G.: Deep learning model generalization in side-channel analysis. Cryptology ePrint Archive, Report 2019/978 (2019). https://eprint.iacr.org/2019/978

  15. Perin, G., Ege, B., Chmielewski, L.: Neural network model assessment for side-channel analysis. Cryptology ePrint Archive, Report 2019/722 (2019). https://eprint.iacr.org/2019/722

  16. Picek, S., Heuser, A., Alippi, C., Regazzoni, F.: When theory meets practice: a framework for robust profiled side-channel analysis. Cryptology ePrint Archive, Report 2018/1123 (2018). https://eprint.iacr.org/2018/1123

  17. Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted attacker framework. Cryptology ePrint Archive, Report 2019/168 (2019). https://eprint.iacr.org/2019/168

  18. Picek, S., Heuser, A., Jovic, A., Batina, L.: A systematic evaluation of profiling through focused feature selection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1–14 (2019). https://doi.org/10.1109/TVLSI.2019.2937365

  19. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptograph. Hardw. Embedded Syst. 2019(1), 209–237 (2018). https://tches.iacr.org/index.php/TCHES/article/view/7339

  20. Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4095–4102. IEEE (2017)

    Google Scholar 

  21. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ascad database. Cryptology ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

  22. Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 6076–6085. Curran Associates, Inc. (2017)

    Google Scholar 

  23. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  24. TELECOM ParisTech SEN research group: DPA Contest (4th edition) (2011). http://www.dpacontest.org/v4/index.php

  25. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptograph. Hardw. Embedded Syst. 2019(2), 107–131 (2019). https://tches.iacr.org/index.php/TCHES/article/view/7387

Download references

Acknowledgment

The authors acknowledge the support from the ’National Integrated Centre of Evaluation’ (NICE); a facility of Cyber Security Agency, Singapore (CSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stjepan Picek .

Editor information

Editors and Affiliations

A Additional Figures

A Additional Figures

In this section, we depict the results for hidden layers we omitted from the paper’s main body due to their similar behavior as those already presented. In Fig. 9, we depict the correlation results for the second hidden layer of an MLP in the intermediate value leakage model. Similarly, Fig. 10 shows results for the MLP2 architecture, the Hamming weight leakage model for hidden layers 2 and 3.

In Fig. 12, we show the results for the label-based inspection approach for the MLP2 architecture. We consider a scenario where both device and keys differ for the intermediate value leakage model for hidden layers 2 and 3.

Fig. 11.
figure 11

Correlation results for MLP2 in the intermediate value leakage model for hidden layers 2 and 3.

Fig. 12.
figure 12

Label-based inspection for MLP2 when both devices and keys differ, intermediate value leakage model for hidden layers 2 and 3.

Figure 13 gives correlation results for CNN for the first fully-connected layers for both the Hamming weight and intermediate value leakage models.

Fig. 13.
figure 13

Correlation results for CNN for the first fully-connected layer.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van der Valk, D., Picek, S., Bhasin, S. (2021). Kilroy Was Here: The First Step Towards Explainability of Neural Networks in Profiled Side-Channel Analysis. In: Bertoni, G.M., Regazzoni, F. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2020. Lecture Notes in Computer Science(), vol 12244. Springer, Cham. https://doi.org/10.1007/978-3-030-68773-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68773-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68772-4

  • Online ISBN: 978-3-030-68773-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics