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Abstract. Monitoring plankton is important as they are an essential
part of the aquatic food web as well as producers of oxygen. Modern
imaging devices produce a massive amount of plankton image data which
calls for automatic solutions. These images are characterized by a very
large variation in both the size and the aspect ratio. Convolutional neural
network (CNN) based classification methods, on the other hand, typically
require a fixed size input. Simple scaling of the images into a common
size contains several drawbacks. First, the information about the size of
the plankton is lost. For human experts, the size information is one of the
most important cues for identifying the species. Second, downscaling the
images leads to the loss of fine details such as flagella essential for species
recognition. Third, upscaling the images increases the size of the network.
In this work, extensive experiments on various approaches to address the
varying image dimensions are carried out on a challenging phytoplankton
image dataset. A novel combination of methods is proposed, showing
improvement over the baseline CNN.

Keywords: Plankton recognition · Convolutional neural networks ·Vary-
ing input size.

1 Introduction

Plankton are a diverse collection of organisms living in large bodies of water
that are drifted by the current. They are an important part of the ecosystem as
they provide the basis for the aquatic food web. Apart from this, the plankton
are also the top producers of oxygen on the Earth and can be used as a good
indicator of the ocean health. Therefore, monitoring plankton populations is
essential. Modern imaging devices are able to produce a massive amount of
plankton image data which calls for automatic solutions to analyze the data. In
practice, this means recognizing the species of plankton using computer vision
techniques.
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A large amount of works on plankton recognition already exists. Recently,
the majority of efforts has been put on the development of convolutional neu-
ral networks (CNN) based recognition methods that have shown to outperform
traditional hand-engineering based methods with a large margin [4]. For ex-
ample, in [1] a CNN architecture for plankton recognition was proposed based
on the well-known VGG architecture. In [11], various CNN architectures were
compared with different plankton image datasets. Moreover, different transfer
learning strategies were evaluated. In [12], machine performance was compared
to that of humans, and the CNN-based methods were shown to outperform the
humans on the data consisting of planktic foraminifera.

The CNN based image recognition methods typically require a fixed size
input. Therefore, the vast majority of existing plankton recognition methods
start by rescaling the images. This, however, is not an ideal approach for typical
plankton image data that are characterized with an extreme variation in both
the image size and the aspect ratio (see Fig. 1). When the image is rescaled
the information about the size of the plankton is lost. For human experts, the
size information is one of the most important cues for identifying the species
suggesting its usefulness also in automatic recognition. Downscaling images leads
to the loss of fine details, such as flagella essential for species recognition. On
the other hand, upscaling images increases the size of the network, resulting as
longer training times and higher requirements for the amount of training data.

Fig. 1. Examples of plankton images with different sizes and aspect ratios.

In this paper, the problem of extreme variations in plankton image size is
considered. First, existing approaches to address the varying input size on CNN-
based image classification are reviewed. Then, extensive experiments on chal-
lenging plankton image data are carried out to compare the existing approaches.
Finally, based on the experiments a multi-stream network utilizing a novel com-
bination of different models is proposed.

2 CNNs with varying image size

Typical CNN architecture requires a fixed size input. In this section, existing
approaches to bypass this limitation are presented.
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Spatial pyramid pooling (SPP) [6] allows training of a single CNN with
multiple image sizes in order to obtain higher scale-invariance and reduction of
over-fitting. The convolutional and pooling layers accept feature maps of any
size as they work in a sliding window manner. Limitation for input size lies in
the fully connected layers, as they need an input of a fixed size. SPP accepts an
input of any size and aspect ratio and produces an output of a fixed size. SPP
uses a defined number of bins where each one performs pooling from one fraction
of the image. For example, one bin performs pooling with the whole image (also
known as global pooling), next 4 bins execute pooling with one quarter and
finally 9 bins pool one ninth of the image each.

A straightforward approach to utilize the image size in the recognition is to
include the size as metadata. This does not directly provide a solution to the
need to rescale the original images but allows the recognition model to use the
size information in the prediction. Various approaches to utilize the metadata in
CNN-based classification models can be found in literature. Ellen et al. [5] com-
pared several approaches for plankton recognition. Experiments on plankton im-
ages and different metadata (e.g., geometric and geotemporal data) showed that
the best accuracy is achieved with the architecture with several fully connected
layers after metadata concatenation. In [3], two approaches to combine image
data with metadata (GPS coordinates were used in the study) were proposed.
The first approach takes advantage of post-processing of an image classifier by
embedding its output together with the metadata. Metadata was processed us-
ing a set of fully connected layers. After that, logits of the image classifier and
metadata classifier are simply merged together. The second approach includes
more interaction between the two classifiers by utilizing feature modulation.

Xing et al. [17] proposed to use patch cropping in a CNN-based model
to recognize images with a high aspect ratio to solve the writer identification
task for handwritten text. The proposed model, called Half DeepWriter takes a
set of randomly selected patches cropped from the original image as an input.
Furthermore, to preserve spatial information among the patches, a model, called
DeepWriter was presented. This DeepWriter consisted of two Half DeepWriters.
Two patches next to each other were cropped. Each patch was then supplied to
one of the Half DeepWriters. These CNNs share their parameters. N pairs of
patches are cropped from an input image and are fed to the model. For each
pair a score vector fi is computed and by averaging the values. The final score
vector is constructed as fj = 1

N

∑N
i=1 fij .

In [13], multi-stream CNNs were proposed as a solution to deal with
both scale-variant and scale-invariant features with CNNs. The core idea is to
combine multiple CNNs and to train each one with a different input image
size. The method was shown to outperform the traditional single CNN trained
with images resized to a common size on the task of artwork classification. The
architecture of the network was based on the ImageNet model [15] where the final
average pooling layer is replaced with a global average pooling layer. Therefore,
the output feature map contain the fixed size for all image scales. When applying
to a new image, all softmax class posteriors from each CNN are averaged into a
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single prediction. With this approach the total number of parameters is increased
as the networks do not share parameters. However, the networks can be trained
individually in parallel.

3 Experiments

Addressing size variation has proved to increase the accuracy of CNNs. This sec-
tion provides the comparative experiments on the suitability of these approaches
on plankton recognition. Four approaches are considered: SPP, metadata inclu-
sion, patch cropping, and multi-stream networks.

3.1 Data

The data consists of phytoplankton images (see Fig. 1) and it was collected from
the Baltic Sea using Imaging FlowCytobot (IFCB) [14]. The dataset contains
about 33000 images labeled by a taxonomist expert into 32 different classes. The
number of samples varies from 100 to 4606 per class. The images consist of one
channel and their sizes are in ranges of 64 to 1276 pixels for the width and 26
to 394 pixels for the height. This variation can be considered extreme. A more
detailed description of the data can be found in [2].

The data was split into 20% testing and 80% training partitions using strat-
ified sampling. The training data was balanced so that each class contained ex-
actly 1000 samples. If a class contained more samples, only the first 1000 images
were used. If there were fewer samples then new realistic images were created
through data augmentation. The following data augmentations were used: hori-
zontal and vertical flipping, rotation of 90 degrees, scaling with the factor of 0.9
to 1.1, blurring, adjusting brightness, and adding Gaussian noise with a variance
of 0.001.

3.2 CNN architectures and implementation details

To provide the baseline and to select CNN architectures for further experiments,
a number of architectures were compared. For this experiment, all the images
were scaled to the common size (the input size of a CNN architecture) using
bicubic interpolation. To maintain the aspect ratio padding using the mean
color computed from the image boundaries was used. Gaussian noise was used
to reduce any artificial edges caused by homogeneous regions. Each image was
normalized by subtracting the mean value from every pixel of the image and
dividing the result by a standard deviation. These values were computed from
the whole training set.

The following architectures were compared: AlexNet [10], DenseNet121 [9],
ResNet50 [7], MobileNet [8], and InceptionV3 [16], as well as, VGG16 based
models called Al-Barazanchi [1] and Ellen [5] developed especially for plankton
recognition. All models were trained with the cross-validation of 10 folds with a
stratified selection. The stochastic gradient descent optimizer was used, together
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with the Nesterov momentum, the initial learning rate set to 0.01, the weight
decay of 10−6 and the momentum of 0.9. For AlexNet, Al-Barazanchi, and Ellen,
the batch size of 256 was chosen as well as training with 60 epochs. For the rest
of these architectures, the batch size was set to 64 and the number of epochs
to 80. The results are shown in Table 1. The deeper networks provide higher

Table 1. The baseline plankton recognition accuracy for the different architectures.

Architecture Input size Parameters Accuracy

Al-Barazanchi 224× 224 2 993 655 0.9341 ± 0.0025
Al-Barazanchi2:1 316× 158 0.9204 ± 0.0136
Al-Barazanchi4:1 448× 112 0.8909 ± 0.0079
AlexNet 224× 224 46 854 880 0.9274 ± 0.0053
DenseNet121 224× 224 7 087 607 0.9441 ± 0.0065
Ellen 128× 128 885 143 0.9110 ± 0.0084
InceptionV3 299× 299 21 914 903 0.9520 ± 0.0013
InceptionV32:1 420× 210 0.9525 ± 0.0033
InceptionV34:1 600× 150 0.9463 ± 0.0031
MobileNet 224× 224 3 284 663 0.9420 ± 0.0045
ResNet50 224× 224 23 694 135 0.9201 ± 0.0244

accuracy. However, this comes with the cost of longer training time. The highest
accuracy of 95.20% was achieved with the InceptionV3. Al-Barazanchi obtained
comparable accuracy of 93.41% with a one-third of the training time. Therefore,
these two architectures were selected for further experiments.

The two architectures were further examined by training them with images
of different aspect ratios to better preserve the details for images containing long
plankton samples. First, the Al-Barazanchi2:1 architecture was constructed for
images with an aspect ratio of 2:1 where the stride of the second pooling layer
was changed to (2,1). This architecture accepts images with the size of 316×158
pixels. Similarly, the Al-Barazanchi4:1 architecture was constructed for images
with an aspect ratio of 4:1 (448 × 112 pixels) where the stride of the second
convolutional layer was adjusted to (4,1). Furthermore, the convolutional kernel
size for the same layer was changed from (3,3) to (6,3). The same modifications
were done for the InceptionV3 architecture. To evaluate the networks, all images
were flipped in such a way that the horizontal dimension was larger than the
vertical dimension. The results are shown in Table 1. The architectures with the
modified aspect ratio for input did not improve the results. This is as expected
since the majority of the images contain the aspect ratio closer to 1:1. However,
it was noticed that the modified architectures were able to correctly classify
several test images for which the baseline model failed.



6 J Bureš et al.

3.3 Spatial Pyramid Pooling

The spatial pyramid pooling layer was leveraged to enable training with images
of varying resolution. This layer replaces the last pooling layer of the architecture
and has a shape of {6×6, 3×3, 2×2, 1×1} with a bin count of 50. The network
was then trained with predefined image sizes (see Table 2). In one epoch both
images for training and validation were resized to one of the sizes so that the
whole batch consists of images with a single fixed size. After the epoch was
finished, the size is switched to the next one and the process is repeated.

The Al-Barazanchi architecture was used for the initial experiments due to
its fast training. The number of epochs was 90. The experiments with multi-
ple different image sizes were evaluated. First, the network was evaluated with
one size only (224 × 224) to see how the SPP layer affects the accuracy. Next,
the combinations of multiple sizes (224 × 224, 180 × 180, and 256 × 256) were
evaluated. The results are shown in Table 2. It can be seen that the SPP layer
had only a minor positive effect on the recognition accuracy on its own. The
same experiment was also repeated with InceptionV3. However, the accuracy
with SPP layer (86.93%–87.61%) was considerably lower than with the base-
line model (95.20 %). Therefore, the search for other size combinations was not
continued.

Table 2. Accuracy for the Al-Barazanchi architecture using the SPP layer.

Image sizes Accuracy

(224× 224) 0.9058 ± 0.0105
(224× 224), (180× 180) 0.9205 ± 0.0111
(224× 224), (256× 256) 0.9327 ± 0.0060
(224× 224), (180× 180), (256× 256) 0.9387 ± 0.0052

3.4 Metadata

The next experiment was to evaluate the effect of utilizing the size (the width
and the height in pixels) of the original image as metadata. In addition, two time
related features (the season and the hour) were utilized as metadata. The time
metadata are motivated by the facts that there is a high seasonal variation in
the plankton communities and their activity varies between the part of the day.
All metadata values were normalized to [−1; 1]. Three architectures to include
metadata proposed in [5] and [3] were examined. These are visualized in Fig. 2.

Two different approaches of training were examined. The first approach trains
the whole architecture together with an embedded image model initialized with
random weights. The second approach uses an image classifier that is initialized
with weights loaded from a trained model and its weights are kept fixed for the
time of training. Therefore, only the metadata part and the common part of
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Fig. 2. Different architectures to include metadata: (a) Simple concatenation [3]; (b)
Metadata interaction [5]; (c) More interaction [5].

the network are trained. The results for the Al-Barazanchi architecture as an
image model are shown in Table 3. The best results were obtained using the
pretrained image model and the Metadata interaction architecture. The effect
of different types of metadata was further evaluated with the best model. While
including only size information improved the accuracy over the baseline, the
best accuracy was obtained using all metadata (time and size). Finally, the
architecture with more interaction among metadata with both time and shape
included was applied with the InceptionV3 as the image model. The inclusion
of metadata provided insignificant improvement over baseline with the accuracy
of 95.22% and 95.20%, respectively.

Table 3. Accuracy for the Al-Barazanchi architecture with metadata.

Model Architecture Accuracy

No metadata 0.9341 ± 0.0022

Blank image model
Simple concatenation 0.9392 ± 0.0037
Metadata interaction 0.9418 ± 0.0041
More interaction 0.9378 ± 0.0061

Pretrained image model

Simple concatenation 0.9391 ± 0.0034
Metadata interaction (all metadata) 0.9432 ± 0.0021
Metadata interaction (size) 0.9414 ± 0.0036
Metadata interaction (time) 0.9433 ± 0.0025
More interaction 0.9424 ± 0.0024

3.5 Patch cropping

Multiple different methods of an image patch cropping were examined. The
first method uses a single patch which is randomly cropped alongside of the
image. The second method uses a pair of patches to preserve spatial information
between them as described in [17]. The images are padded in their width to
guarantee enough space for two consecutive patches to be cropped. This pair
is then supplied to the DeepWriter model [17]. Note that any backbone CNN
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architecture can be used. The third method was to utilize the DeepWriter model
without padding resulting in overlapping image patches for images with close to
square shape. All the three methods of patch cropping are depicted in Fig. 3.

Original Single patch Patch pair Patch pair modified

Fig. 3. Different patch cropping methods.

The first set of the experiments was carried out using Al-Barazanchi as the
backbone architecture. Each image was first rotated into the horizontal position
so that its width is greater than its height. After that, the image was resized in
a way that the height of the image was the same as the height of the patch to be
cropped while keeping the original aspect ratio. The model was trained for 90
epochs with a batch size of 64. The evaluation was performed through a sliding
window where N patches or pairs of patches were subsequently selected from the
image. Each of these patches was then evaluated by the network resulting in N
prediction vectors. These vectors were finally combined by averaging them into
a single prediction as described in section 2. The results are shown in Table 4.

Table 4. Accuracy for the patch cropping with the Al-Barazanchi architecture.

Patches Single patch Patch pair Patch pair mod.

2 0.8987 ± 0.0045 0.9298 ± 0.0030 0.9219 ± 0.0057
4 0.9285 ± 0.0052 0.9370 ± 0.0025 0.9257 ± 0.0062
8 0.9301 ± 0.0050 0.9392 ± 0.0017 0.9276 ± 0.0063

16 0.9299 ± 0.0042 0.9420 ± 0.0021 0.9289 ± 0.0059

With enlarging the number of iterations, the accuracy increases. However,
the time for evaluation is gradually increasing as well. While switching from
8 to 16 patches there was no significant improvement. The methods utilizing
the patch pairs outperformed the single patch method which suggests that the
DeepWriter architecture indeed benefits from having extra spatial information
preserved by selecting two consecutive patches. The DeepWriter model outper-
formed the baseline model. This suggests that this method leverages small details
that are being lost due to resizing. Finally, the experiment was repeated by using
InceptionV3 as the backbone architecture. This model was trained for 90 epochs
with a batch size of 32. The non-modified patch pair approach was utilized for
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cropping and the number of patches was set to 4. The accuracy of 95.28% was
achieved which is only slightly better than the baseline.

3.6 Multi-stream CNN

To experiment with the multi-stream CNN, i.e., combining multiple CNN based
models, the method proposed in [13] was utilized. Various models with different
input sizes and aspect ratios were trained separately, and for the final recognition
model, the prediction vectors were combined through averaging similarly to [13].
The experiment was repeated for both the Al-Barazanchi and InceptionV3 ar-
chitectures and the results are shown in Table 5.

Table 5. Accuracy for different model combinations. Modelx:1 stands for modification
of the baseline model with the input aspect ratio of x:1.

Model combination Al-Barazanchi InceptionV3

Baseline (Model1:1) 0.9341 ± 0.0022 0.9577 ± 0.0011
Model1:1 + Model2:1 0.9439 ± 0.0024 0.9577 ± 0.0011
Model1:1 + Model4:1 0.9383 ± 0.0031 0.9562 ± 0.0020
Model1:1 + Model2:1 + Model4:1 0.9444 ± 0.0022 0.9596 ± 0.0005
Model1:1 + patch cropping 0.9488 ± 0.0015 0.9580 ± 0.0023
Model1:1 + Model2:1 + patch cropping 0.9499 ± 0.0018 0.9616 ± 0.0008
Model1:1 + Model4:1 + patch cropping 0.9466 ± 0.0024 0.9606 ± 0.0002

The best improvement for Al-Barazanchi was found in combining it together
with Al-Barazanchi2:1 and DeepWriter. This suggests that combining CNNs
where each one is targeted on images with different aspect ratios can result
in significant boost in accuracy. Using a method that leverages patch cropping
proved to be more effective than CNNs that are fed with whole images of larger
aspect ratios. The similar results were obtained also for the InceptionV3 archi-
tecture.

3.7 Comparison of the approaches

The summary of the results for the different approaches can be seen in Table 6.
For the Al-Barazanchi architecture every approach improved the accuracy, while
the multi-stream approach provided the best accuracy. In the case of InceptionV3
only using the multi-stream method affected significantly. This is possibly due
to the already high accuracy of InceptionV3 as well as its high complexity. It
is also worth noting that while baseline accuracy is noticeably higher for Incep-
tionV3 compared to Al-Barazanchi with the multi-stream version Al-Barazanchi
provides comparable performance. In the plankton research, image datasets are
typically obtained with different imaging devices and contain different species
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compositions, making it necessary to retrain the model for each dataset sepa-
rately often with a limited amount of training data. Therefore, shallower models
are preferred. More detailed experiments can be found in [2].

Table 6. Comparison of the accuracy for the different approaches.

Approach Al-Barazanchi InceptionV3

Baseline 0.9341 ± 0.0022 0.9520 ± 0.0014
SPP 0.9387 ± 0.0052 0.8761 ± 0.0153
Metadata 0.9432 ± 0.0021 0.9522 ± 0.0021
Patch cropping 0.9392 ± 0.0017 0.9528 ± 0.0009
Multi-stream 0.9499 ± 0.0018 0.9616 ± 0.0008

4 Conclusions

In this paper, various approaches to address the extreme variation in both the
image size and the aspect ratio were studied for the task of plankton recog-
nition. First, a comparison of CNN architectures was carried out. Based on
the results, two architectures, Al-Barazanchi developed specifically for plankton
recognition and considerably deeper InceptionV3, were selected for further ex-
periments. Four modifications to the baseline architectures were evaluated: 1)
spatial pyramid pooling, 2) metadata inclusion, 3) patch cropping, and 4) multi-
stream networks. The multi-stream network combining the patch cropping model
with the full image models for various aspect ratios was shown to outperform the
baseline and to produce the highest accuracy for both backbone architectures.
With this approach, the considerably shallower Al-Barazanchi architecture (3M
parameters) provided comparable performance to the InceptionV3 architecture
(22M parameters), making it an attractive choice for wider use in the plankton
research, characterized by a large pool of datasets with different imaging device
and species compositions.

Acknowledgements

The research was carried out in the FASTVISION project (No. 321991) funded
by the Academy of Finland. The authors would also like to thank Kaisa Kraft,
Dr. Sanna Suikkanen, Prof. Timo Tamminen, and Prof. Jukka Sepplälä from
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nen, T., Kälviäinen, H., Haario, H.: Towards operational phytoplankton recogni-
tion with automated high-throughput imaging and compact convolutional neural
networks. Ocean Science Discussions (2020)

5. Ellen, J.S., Graff, C.A., Ohman, M.D.: Improving plankton image classification us-
ing context metadata. Limnology and Oceanography: Methods 17, 439–461 (2019)

6. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolu-
tional networks for visual recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 37(9), 1904–1916 (2015)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

8. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR (2017)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

11. Lumini, A., Nanni, L.: Deep learning and transfer learning features for plankton
classification. Ecological informatics 51, 33–43 (2019)

12. Mitra, R., Marchitto, T., Ge, Q., Zhong, B., Kanakiya, B., Cook, M., Fehren-
bacher, J., Ortiz, J., Tripati, A., Lobaton, E.: Automated species-level identifica-
tion of planktic foraminifera using convolutional neural networks, with comparison
to human performance. Marine Micropaleontology 147, 16–24 (2019)

13. Noord, N., Postma, E.: Learning scale-variant and scale-invariant features for deep
image classification. Pattern Recognition 61, 583–592 (2016)

14. Olson, R.J., Sosik, H.M.: A submersible imaging-in-flow instrument to analyze
nano-and microplankton: Imaging flowcytobot. Limnology and Oceanography:
Methods 5, 195–203 (2007)

15. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: The all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

16. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)

17. Xing, L., Qiao, Y.: Deepwriter: A multi-stream deep cnn for text-independent
writer identification. In: ICFHR (2016)


	kansi_bures_plankton
	Bures_plankton_recognition_in_images_with_varying_size

