Skip to main content

Exploring the Contributions of Low-Light Image Enhancement to Network-Based Object Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12666))

Abstract

Low-light is a challenging environment for both human and computer vision to perform tasks such as object classification and detection. Recent works have shown potential in employing enhancements algorithms to support and improve such tasks in low-light, however there has not been any focused analysis to understand the direct effects that low-light enhancement have on an object detector. This work aims to quantify and visualize such effects on the multi-level abstractions involved in network-based object detection. First, low-light image enhancement algorithms are employed to enhance real low-light images, and then followed by deploying an object detection network on the low-light as well as the enhanced counterparts. A comparison of the activations in different layers, representing the detection features, are used to generate statistics in order to quantify the enhancements’ contribution to detection. Finally, this framework was used to analyze several low-light image enhancement algorithms and identify their impact on the detection model and task. This framework can also be easily generalized to any convolutional neural network-based models for the analysis of different enhancements algorithms and tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akbarinia, A., Gegenfurtner, K.R.: How is contrast encoded in deep neural networks? arXiv preprint arXiv:1809.01438 (2018)

  2. Akbarinia, A., Gil-Rodríguez, R.: Deciphering image contrast in object classification deep networks. Vision Res. 173, 61–76 (2020)

    Article  Google Scholar 

  3. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018)

    Google Scholar 

  4. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  5. Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., Paisley, J.: A fusion-based enhancing method for weakly illuminated images. Signal Process. 129, 82–96 (2016)

    Article  Google Scholar 

  6. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (cvpr), pp. 2782–2790 (2016)

    Google Scholar 

  7. Girshick, R.: Fast r-cnn. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)

    Google Scholar 

  8. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  Google Scholar 

  9. Li, L., Wang, R., Wang, W., Gao, W.: A low-light image enhancement method for both denoising and contrast enlarging. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3730–3734. IEEE (2015)

    Google Scholar 

  10. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)

    Article  MathSciNet  Google Scholar 

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Liu, D., Zhang, H., Xiong, Z.: On the classification-distortion-perception tradeoff. In: Advances in Neural Information Processing Systems (NIPS), pp. 1206–1215 (2019)

    Google Scholar 

  13. Loh, Y.P., Chan, C.S.: Getting to know low-light images with the exclusively dark dataset. Comput. Vis. Image Underst. 178, 30–42 (2019)

    Article  Google Scholar 

  14. Loh, Y.P., Liang, X., Chan, C.S.: Low-light image enhancement using gaussian process for features retrieval. Signal Proc. Image Commun. 74, 175–190 (2019)

    Article  Google Scholar 

  15. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Tanaka, M., Shibata, T., Okutomi, M.: Gradient-based low-light image enhancement. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–2. IEEE (2019)

    Google Scholar 

  18. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  19. Wang, W., Wei, C., Yang, W., Liu, J.: Gladnet: low-light enhancement network with global awareness. In: 2018 IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 751–755. IEEE (2018)

    Google Scholar 

  20. Yang, Q., Jung, C., Fu, Q., Song, H.: Low light image denoising based on poisson noise model and weighted tv regularization. In: 2018 IEEE International Conference on Image Processing (ICIP), pp. 3199–3203. IEEE (2018)

    Google Scholar 

Download references

Acknowledgment

This research is sponsored by the Mini Fund Research 2019–2020 Grant MMUI/190020 from Multimedia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuen Peng Loh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loh, Y.P. (2021). Exploring the Contributions of Low-Light Image Enhancement to Network-Based Object Detection. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics