Skip to main content

Explainable Model Selection of a Convolutional Neural Network for Driver’s Facial Emotion Identification

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12666))

Included in the following conference series:

Abstract

Road accidents have a significant impact on increasing death rates. In addition to weather, roads, and vehicles, human error constitutes these accidents’ main reason. So, driver-safety technology is one of the common research areas, whether in academia or industry. The driver’s behavior is influenced by his feelings such as anger or sadness, as well as the physical distraction factors such as using mobile or drinking. Recognition of the driver’s emotions is crucial in expecting the driver’s behavior and dealing with it. In this work, the Convolutional Neural Network (CNN) model is employed to implement a Facial Expression Recognition (FER) approach to identify the driver’s emotions. The proposed CNN model has achieved considerable performance in prediction and classification tasks. However, it is similar to other deep learning approaches that have a lack of transparency and interpretability. We use Explainable Artificial Intelligence (XAI) techniques that generate interpretations for decisions and provide human-explainable representations to address this shortage. We utilize two visualization methods of XAI approaches to support our decision of choosing the architecture of the proposed FER model. Our model achieves accuracies of 92.85%, 99.28%, 88.88%, and 100% for the JAFFE, CK+, KDEF, and KMU-FED datasets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Dagher, I., Dahdah, E., Al Shakik, M.: Facial expression recognition using three-stage support vector machines. Visual Comput. Ind. Biomedi. Art 2(1), 1–9 (2019). https://doi.org/10.1186/s42492-019-0034-5

    Article  Google Scholar 

  3. Dong, Y., Hu, Z., Uchimura, K., Murayama, N.: Driver inattention monitoring system for intelligent vehicles: a review. IEEE Trans. Intell. Transp. Syst. 12(2), 596–614 (2010)

    Article  Google Scholar 

  4. Du, G., Wang, Z., Gao, B., Mumtaz, S., Abualnaja, K.M., Du, C.: A convolution bidirectional long short-term memory neural network for driver emotion recognition. IEEE Trans. Intell. Transp. Syst. 1–9 (2020)

    Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  6. Guettas, A., Ayad, S., Kazar, O.: Driver state monitoring system: a review. In: Proceedings of the 4th International Conference on Big Data and Internet of Things. BDIoT 2019, Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3372938.3372966

  7. Harel, J., Koch, C., Perona, P.: Saliency map tutorial (2012). https://www.techylib.com/en/view/skillfulwolverine/saliency_map_tutorial

  8. Jeong, M., Ko, B.C.: Driver’s facial expression recognition in real-time for safe driving. Sensors 18(12), 4270 (2018)

    Article  Google Scholar 

  9. Kandeel, A.A., Rahmanian, M., Zulkernine, F.H., Abbas, H., Hassanein, H.S.: Facial expression recognition using a simplified convolutional neural network model. In: 2020 International Conference on Communications, Signal Processing, and their Applications (ICCSPA 2020)(Accepted). Sharjah, United Arab Emirates (2020)

    Google Scholar 

  10. Knapton, S.: Which emotion raises the risk of a car crash by nearly 10 times? February 2016. https://www.telegraph.co.uk/news/science/science-news/12168472/Which-emotion-raises-the-risk-of-a-car-crash-by-nearly-10-times.html?

  11. Ko, B.C.: A brief review of facial emotion recognition based on visual information. Sensors 18(2), 401 (2018)

    Article  Google Scholar 

  12. Kowalczuk, Z., Czubenko, M., Merta, T.: Emotion monitoring system for drivers. IFAC-PapersOnLine 52(8), 200–205 (2019)

    Article  Google Scholar 

  13. Krishna, M.G., Srinivasulu, A.: Face detection system on Adaboost algorithm using HAAR classifiers. Int. J. Mod. Eng. Res. 2(5), 3556–3560 (2012)

    Google Scholar 

  14. Lee, K.W., Yoon, H.S., Song, J.M., Park, K.R.: Convolutional neural network-based classification of driver’s emotion during aggressive and smooth driving using multi-modal camera sensors. Sensors 18(4), 957 (2018)

    Article  Google Scholar 

  15. Li, K., Jin, Y., Akram, M.W., Han, R., Chen, J.: Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy. Visual Comput. 36(2), 391–404 (2019). https://doi.org/10.1007/s00371-019-01627-4

    Article  Google Scholar 

  16. Lopes, A.T., de Aguiar, E., De Souza, A.F., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recogn. 61, 610–628 (2017)

    Article  Google Scholar 

  17. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 94–101 (2010)

    Google Scholar 

  18. Lundqvist, D., Flykt, A., Öhman, A.: The karolinska directed emotional faces (kdef). CD ROM from Department of Clinical Neuroscience, Psychology Section, Karolinska Institutet 91, 630 (1998)

    Google Scholar 

  19. Lyons, M., Kamachi, M., Gyoba, J.: The Japanese Female Facial Expression (JAFFE) Database, April 1998. https://doi.org/10.5281/zenodo.3451524

  20. Mesken, J.: Determinants and consequences of drivers’ emotions. Stichting Wetenschappelijk Onderzoek Verkeersveiligheid SWOV (2006)

    Google Scholar 

  21. Nonis, F., Dagnes, N., Marcolin, F., Vezzetti, E.: 3d approaches and challenges in facial expression recognition algorithms–a literature review. Appl. Sci. 9(18), 3904 (2019)

    Article  Google Scholar 

  22. Nübling, M., Stößel, U., Hasselhorn, H.M., Michaelis, M., Hofmann, F.: Measuring psychological stress and strain at work-evaluation of the COPSOQ questionnaire in Germany. GMS Psycho-Social Medicine 3 (2006)

    Google Scholar 

  23. Pandey, R.K., Karmakar, S., Ramakrishnan, A., Saha, N.: Improving facial emotion recognition systems using gradient and Laplacian images. arXiv preprint arXiv:1902.05411 (2019)

  24. Puthanidam, R.V., Moh, T.S.: A hybrid approach for facial expression recognition. In: Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication, pp. 1–8 (2018)

    Google Scholar 

  25. Scherer, K.R., Schorr, A., Johnstone, T.: Appraisal Processes in Emotion: Theory, Methods, Research. Oxford University Press, Oxford (2001)

    Google Scholar 

  26. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  27. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)

    Article  Google Scholar 

  28. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  29. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  30. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. vol. 1, pp. I-I (2001)

    Google Scholar 

  31. Wang, Q., Jia, K., Liu, P.: Design and implementation of remote facial expression recognition surveillance system based on PCA and KNN algorithms. In: 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 314–317 (2015)

    Google Scholar 

  32. World Health Organization: Global status report on road safety 2018: Summary. World Health Organization, Technical report (2018)

    Google Scholar 

  33. Yang, B., Cao, J., Ni, R., Zhang, Y.: Facial expression recognition using weighted mixture deep neural network based on double-channel facial images. IEEE Access 6, 4630–4640 (2017)

    Article  Google Scholar 

  34. Zhang, J., Mei, X., Liu, H., Yuan, S., Qian, T.: Detecting negative emotional stress based on facial expression in real time. In: 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), pp. 430–434 (2019)

    Google Scholar 

  35. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany A. Kandeel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kandeel, A.A., Abbas, H.M., Hassanein, H.S. (2021). Explainable Model Selection of a Convolutional Neural Network for Driver’s Facial Emotion Identification. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics