Skip to main content

Introducing Bidirectional Ordinal Classifier Cascades Based on a Pain Intensity Recognition Scenario

  • Conference paper
  • First Online:
Book cover Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Ordinal classifier cascades (OCCs) are popular machine learning tools in the area of ordinal classification. OCCs constitute specific classification ensemble schemes that work in sequential manner. Each of the ensemble’s members either provides the architecture’s final prediction, or moves the current input to the next ensemble member. In the current study, we first confirm the fact that the direction of OCCs can have a high impact on the distribution of its predictions. Subsequently, we introduce and analyse our proposed bidirectional combination of OCCs. More precisely, based on a person-independent pain intensity scenario, we provide an ablation study, including the evaluation of different OCCs, as well as different popular error correcting output codes (ECOC) models. The provided outcomes show that our proposed straightforward approach significantly outperforms common OCCs, with respect to the accuracy and mean absolute error performance measures. Moreover, our results indicate that, while our proposed bidirectional OCCs are less complex in general, they are able to compete with and even outperform most of the analysed ECOC models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Online available at http://www.iikt.ovgu.de/BioVid.print.

  2. 2.

    More details at https://www.medoc-web.com/pathway.

  3. 3.

    www.mathworks.com.

References

  1. Abe, S.: Support Vector Machines for Pattern Classification. Advances in Pattern Recognition. Springer, London (2005). https://doi.org/10.1007/1-84628-219-5

    Book  MATH  Google Scholar 

  2. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Bellmann, P., Thiam, P., Schwenker, F.: Dominant channel fusion architectures - an intelligent late fusion approach. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020)

    Google Scholar 

  4. Bellmann, P., Hihn, H., Braun, D., Schwenker, F.: Binary classification: counterbalancing class imbalance by applying regression models in combination with one-sided label shifts. In: ICAART. SCITEPRESS (2021, to be published)

    Google Scholar 

  5. Bellmann, P., Schwenker, F.: Ordinal classification: working definition and detection of ordinal structures. IEEE Access 8, 164380–164391 (2020)

    Article  Google Scholar 

  6. Bellmann, P., Thiam, P., Schwenker, F.: Pain intensity recognition - an analysis of short-time sequences in a real-world scenario. In: Schilling, F.-P., Stadelmann, T. (eds.) ANNPR 2020. LNCS (LNAI), vol. 12294, pp. 149–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58309-5_12

    Chapter  Google Scholar 

  7. Cardoso, J.S., da Costa, J.F.P., Cardoso, M.J.: Modelling ordinal relations with SVMs: an application to objective aesthetic evaluation of breast cancer conservative treatment. Neural Netw. 18(5–6), 808–817 (2005)

    Article  Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  9. Chu, W., Keerthi, S.S.: New approaches to support vector ordinal regression. In: ICML. ACM International Conference Proceeding Series, vol. 119, pp. 145–152. ACM (2005)

    Google Scholar 

  10. Chu, W., Keerthi, S.S.: Support vector ordinal regression. Neural Comput. 19(3), 792–815 (2007)

    Article  MathSciNet  Google Scholar 

  11. Dietterich, T.G., Bakiri, G.: Error-correcting output codes: a general method for improving multiclass inductive learning programs. In: AAAI, pp. 572–577. AAAI Press/The MIT Press (1991)

    Google Scholar 

  12. Escalera, S., Pujol, O., Radeva, P.: Separability of ternary codes for sparse designs of error-correcting output codes. Pattern Recognit. Lett. 30(3), 285–297 (2009)

    Article  Google Scholar 

  13. Escalera, S., Pujol, O., Radeva, P.: On the decoding process in ternary error-correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 120–134 (2010)

    Article  Google Scholar 

  14. Gutiérrez, P.A., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernández-Navarro, F., Hervás-Martínez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016)

    Article  Google Scholar 

  15. Hihn, H., Braun, D.A.: Specialization in hierarchical learning systems. Neural Process. Lett. 52(3), 2319–2352 (2020). https://doi.org/10.1007/s11063-020-10351-3

    Article  Google Scholar 

  16. Hühn, J.C., Hüllermeier, E.: Is an ordinal class structure useful in classifier learning? IJDMMM 1(1), 45–67 (2008)

    Article  Google Scholar 

  17. Kächele, M., et al.: Adaptive confidence learning for the personalization of pain intensity estimation systems. Evolving Syst. 8(1), 71–83 (2016). https://doi.org/10.1007/s12530-016-9158-4

    Article  Google Scholar 

  18. Kächele, M., Thiam, P., Amirian, M., Schwenker, F., Palm, G.: Methods for person-centered continuous pain intensity assessment from bio-physiological channels. J. Sel. Top. Signal Process. 10(5), 854–864 (2016)

    Article  Google Scholar 

  19. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  20. Lattke, R., Lausser, L., Müssel, C., Kestler, H.A.: Detecting ordinal class structures. In: Schwenker, F., Roli, F., Kittler, J. (eds.) MCS 2015. LNCS, vol. 9132, pp. 100–111. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20248-8_9

    Chapter  Google Scholar 

  21. Lausser, L., Schäfer, L.M., Kühlwein, S.D., Kestler, A.M.R., Kestler, H.A.: Detecting ordinal subcascades. Neural Process. Lett. 52(3), 2583–2605 (2020). https://doi.org/10.1007/s11063-020-10362-0

    Article  Google Scholar 

  22. Lausser, L., Schäfer, L.M., Schirra, L.R., Szekely, R., Schmid, F., Kestler, H.A.: Assessing phenotype order in molecular data. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  23. Al-Eidan, R.M., Al-Khalifa, H., Al-Salman, A.: Deep-learning-based models for pain recognition: a systematic review. Appl. Sci. 10(17), 5984 (2020)

    Article  Google Scholar 

  24. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006). https://doi.org/10.1109/MCAS.2006.1688199

    Article  Google Scholar 

  25. Ricken, T., Steinert, A., Bellmann, P., Walter, S., Schwenker, F.: Feature extraction: a time window analysis based on the X-ITE pain database. In: Schilling, F.-P., Stadelmann, T. (eds.) ANNPR 2020. LNCS (LNAI), vol. 12294, pp. 138–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58309-5_11

    Chapter  Google Scholar 

  26. Schwenker, F., Dietrich, C., Thiel, C., Palm, G.: Learning of decision fusion mappings for pattern recognition. Int. J. Artif. Intell. Mach. Learn. (AIML) 6, 17–21 (2006)

    Google Scholar 

  27. Snoek, C., Worring, M., Smeulders, A.W.M.: Early versus late fusion in semantic video analysis. In: ACM Multimedia, pp. 399–402. ACM (2005)

    Google Scholar 

  28. Tax, D.M.J., Duin, R.P.W.: Using two-class classifiers for multiclass classification. In: ICPR, vol. 2, pp. 124–127. IEEE Computer Society (2002)

    Google Scholar 

  29. Thiam, P., et al.: Multi-modal pain intensity recognition based on the senseemotion database. IEEE Trans. Affect. Comput. 1 (2019). https://doi.org/10.1109/taffc.2019.2892090

  30. Thiam, P., Bellmann, P., Kestler, H.A., Schwenker, F.: Exploring deep physiological models for nociceptive pain recognition. Sensors 19(20), 4503 (2019)

    Article  Google Scholar 

  31. Thiam, P., Kestler, H.A., Schwenker, F.: Two-stream attention network for pain recognition from video sequences. Sensors 20(3), 839 (2020)

    Article  Google Scholar 

  32. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013)

    MATH  Google Scholar 

  33. Walter, S., et al.: The biovid heat pain database data for the advancement and systematic validation of an automated pain recognition system. In: CYBCONF, pp. 128–131. IEEE (2013). https://doi.org/10.1109/CYBConf.2013.6617456

  34. Werner, P., Lopez-Martinez, D., Walter, S., Al-Hamadi, A., Gruss, S., Picard, R.: Automatic recognition methods supporting pain assessment: a survey. IEEE Trans. Affect. Comput. 1 (2019). https://doi.org/10.1109/taffc.2019.2946774

  35. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

Download references

Acknowledgments

The work of Friedhelm Schwenker and Peter Bellmann is supported by the project Multimodal recognition of affect over the course of a tutorial learning experiment (SCHW623/7-1), funded by the German Research Foundation (DFG). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research. Hans A. Kestler acknowledges funding from the German Science Foundation (DFG, 217328187 (SFB 1074) and 288342734 (GRK HEIST)). Hans A. Kestler also acknowledges funding from the German Federal Ministery of Education and Research (BMBF) e:MED confirm (id 01ZX1708C) and TRAN-SCAN VI - PMTR-pNET (id 01KT1901B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bellmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellmann, P., Lausser, L., Kestler, H.A., Schwenker, F. (2021). Introducing Bidirectional Ordinal Classifier Cascades Based on a Pain Intensity Recognition Scenario. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics