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Abstract. Autonomous mortar raking requires a computer vision sys-
tem which is able to provide accurate segmentation masks of close-range
images of brick walls. The goal is to detect and ultimately remove the
mortar, leaving the bricks intact, thus automating this construction-
related task. This paper proposes such a vision system based on the
combination of machine learning algorithms. The proposed system fuses
the individual segmentation outputs of eight classifiers by means of a
weighted voting scheme and then performing a threshold operation to
generate the final binary segmentation. A novel feature of this approach
is the fusion of several segmentations using a low-cost commercial off-
the-shelf hardware setup. The close-range brick wall segmentation capa-
bilities of the system are demonstrated on a total of about 9 million data
points.

Keywords: Image segmentation · Construction robotics · Machine learn-
ing · Deep learning.

1 Introduction

The work presented in this paper focuses on the construction industry domain,
the automation of which has gained an increased attention in recent years. The
application of computer vision systems at different phases of the lifecycle of civil
assets were analyzed in [26]. Such systems are applied during construction, op-
eration, as well as maintenance, and perform operations such as defect detection
and condition assessment [26, 13]. From a safety perspective, [14] analyzed the
feasibility of a drone based hazard detection system at construction sites. The
application of augmented reality in the construction industry is yet another field
of interest [25, 27]. Building information modeling has also gained new advances
in recent years [15, 2, 1].

This paper focuses on the renovation aspect of the construction industry;
more specifically on the renovation of brick walls. During construction of the
wall, mortar is used to bind bricks together. Over time, the integrity of the wall
might become compromised due to the degradation of the mortar (and bricks).
This paper proposes a computer vision system for masonry wall segmentation in
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Fig. 1: An example setup of the autonomous mortar raking robot (designed by Robot
At Work [18]). It is composed of a modular rail system to which electric motors are
attached (blue housing in the image). The end tool is a milling device used to remove
the mortar from between the bricks.

order to enable a robotic platform—affixed to the surface of the wall, as shown in
Fig. 1—to automatically mill away the mortar from between the bricks without
damaging them. By replacing the old mortar with fresh one the integrity of the
wall is enhanced, which prolongs the lifetime of the building.

Without the robot, this operation would be carried out by a craftsman who
would hold the tool in hand and progressively mill away the mortar. This opera-
tion requires the construction of some kind of scaffolding, ensuring the safety of
the operator. Furthermore, this process takes time and requires the operator to
pay close attention to the edges of the bricks. During the renovation process, it is
imperative that only the mortar is milled and the bricks are left unscathed. All
these constraints put a burden on the operator. Furthermore, according to [4],
prolonged exposure to such mechanical vibrations may lead to disorders in the
vascular and neurological systems of the upper limb, called hand-arm vibration
syndrome, posing a health risk to operators.

The robotic solution mitigates all of the above problems and harmful effects
towards the operators. However, it now becomes a challenge for the robot to know
where the mortar is. The brick wall has presumably deformed over the years, or
was inherently unstructured—depending on the type and uniformity of bricks
used. This makes the mortar detection a more general problem. Therefore, the
contribution of this paper to enable a robotic platform to perform autonomous
mortar raking is summarized as follows:

1. First, a number of image segmentation algorithms are considered and eval-
uated for the segmentation of close-range images of brick walls using color
information and depth from stereo vision.
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2. Secondly, a process to fuse the individual segmentation masks is proposed
based on the weighted sum and empirically determined threshold operation
of said masks.

2 Related Work

Although the application of computer vision systems in the construction industry
in general is abundant, the literature on the specific application of masonry
(brick) wall segmentation is scarce. Some applications employ laser technology
(such as terrestrial laser scanners) to sample the environment [23, 22, 19], while
others rely on 24-bit color images [11, 16].

Valero et al. [23] present a technology for automatic fault detection in ashlar
masonry walls. They argue that surveying of buildings for condition done by
human experts is often unreliable and dependent on the expertise and experi-
ence of the operators. Therefore, their proposal uses terrestrial laser scan (TLS)
data (precise 3D point cloud), contrary to the our approach, together with color
information gathered by a DSLR camera. They overlay the color information by
generating a color-cloud using structure from motion. Their segmentation of the
masonry wall is based on the 2D continuous wavelet transform documented in
[22], contrary to our machine learning based classifiers.

Riveiro et al. propose an algorithm for processing laser scanning data using an
improved, marker-controlled watershed segmentation in [19]. They used a Riegl
terrestrial laser scanner in their case study to sample a point cloud, contrary
to our stereo vision based depth calculation. They reduce the dimensionality
of the data by using a raster model to lattice the (planar) point cloud of the
masonry wall. They fit a plane to the point cloud, and then take the orthogonal
projection for each lattice to form a 2D pixel. The intensity value of each pixel
is dependent on all the 3D points in the cloud inside the corresponding lattice.
While our approach uses ML classifiers, their segmentation of the bricks is done
using markers to perform the watershed based segmentation. The markers are
derived from geometrical constraints under the assumption that the bricks follow
a horizontal course. Using image gradients, the horizontal and vertical mortar
channels are found, and connected to form a rough segmentation of the bricks –
they call it a wireframe. The inner areas of the found segments in the wireframe
serve as the markers for the watershed algorithm, which provides a more accurate
segmentation along the edges.

In [16], Oses et al. proposes an automatic, image-based delineation method
used in connection with built heritage assessment. Their goal is to assist and
speed up the process of determining the degree of protection required for a
certain built heritage. Their method converts the input image into a single-
channel grayscale one, and then slices it into a number of smaller region of
interests (ROIs). These cover the entire image, but are processed independently.
Outliers (i.e. intensity values with a frequency lower than a certain threshold)
are removed by inpainting. For each ROI, three modes (i.e. intensity values) are
selected based on the histogram of the image. Using an arbitrary neighborhood
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around these modes, the image is binarized. The blobs in the three binary image
are thinned by removing their inner parts. Afterwards, they use the probabilistic
Hough transform to detect straight lines in the three images. The detected lines
are then fused: colinear lines that are close to each other are connected, and short
ones are removed. While our approach uses the color- and depth information to
train the models, they construct a series of features using the line segments,
which are used to train several classifiers (e.g. SVM, naive Bayes, decision trees,
etc.). These classifiers then provide the final segmentation of the bricks.

Similarly to our system, Ibrahim et al. present a machine learning based
segmentation algorithm in [11], however, they only use a single model. Their
goal is to segment individual brick instances in a 2D image input, both for
modern brick walls as well as ancient archaeological sites. Their method can
be divided into two steps. During the first step, a convolutional neural network
(UNet) is used to generate a grayscale prediction image from the input. Their
network is trained on the RGB values of the input image. The second step aims
to extract an accurate outline of the bricks using the delineation map obtained in
the previous step by applying the inverted distance transform and the H-minima
transform. Finally, the watershed algorithm is applied using the H-minima basins
as markers for starting points. This last step is helpful in separating touching
bricks from each other and correctly drawing an edge in between them. However,
in our case, this is not a concern, since the close-range images of the brick wall
do not contain touching bricks.

The work presented in this paper aims to add to the body of literature within
brick wall segmentation to provide the necessary segmentation for autonomous
mortar raking. Contrary to [23, 22, 19], our approach is based on color and depth
information (from stereo vision) using low-cost imaging hardware. Similarly to
[11, 16], we use machine learning models, however, we take the pixel-wise clas-
sification further and propose an algorithm to combine the segmentation masks
of several models.

3 Proposed System

The proposed system focuses on providing an accurate segmentation of close-
range images of masonry walls. The algorithm involves a number of steps outlined
in Fig. 2. Contrary to the approaches of related work presented in Section 2, this
system is designed to work with close-range (i.e. 100–250 mm from the wall) and
cost-effective imaging of small areas of the wall at a time. Therefore, suitable
hardware is selected (see Section 3.1) and the rest of the system is tailored to
work with the available data (see Section 3.2).

3.1 Hardware

The selected hardware is the Intel RealSense D435 camera [12], which is a com-
pact device (90 × 25 × 25 mm and 72 g) that houses a depth module and an
extra RGB module. The depth module uses assisted stereo vision to calculate the
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Hardware Preprocessing Segmentation Post-
processing Fusion

Fig. 2: Outline of the proposed system for the segmentation of close-range images of
masonry walls.

depth. There are two grayscale imagers and an extra infrared projector which
projects a static IR pattern to help aid the depth calculation in scenes with
inadequate texture. Based on the characteristics of the device presented in [12]
and visible dimensions of 54× 228 mm of the bricks in the considered use cases,
the D435 is able to capture an entire brick along the vertical and horizontal axes
at a minimum distance of rmin = 67.14 mm and rmin = 159.46 mm respectively,
using:

rmin = dtarget
f

dCCD
, (1)

where dtarget denotes the dimensions of the brick, f is the focal length of the
device, and dCCD denotes the dimensions of the sensor. Furthermore, the single-
pixel resolution is expected to be less than 1 mm up to a maximum distance of
rmax = 197.7 mm from the wall based on:

rmax = dtarget
f

presdCCD
, (2)

where pres = 3 is the minimum distance between two centroids in pixels (i.e.
the minimum distance required to have a well-defined separation between two
points in the image).

Depth information is recovered from stereo vision using the epipolar geometry
[9]. The two cameras are offset from each other by a baseline of b = 50.27 mm.
The D435 uses the left imager as the reference. Since the left-most part of the
left image is not seen by the right imager, the depth map contains a so-called
invalid depth band on the left side. This is given in [12] as:

b

2z tan
(
HFOV

2

) , (3)

where HFOV is the horizontal field of view of the imagers, and z is the distance
from the wall. In the aforementioned working range of the device, (3) yields
around 10% – 15% of the depth map being invalid. According to [9], the depth
is recovered as:

z =
bf

x− x′ , (4)

where the term x − x′ is called the disparity, and z is the depth value. As the
depth is inversely proportional to the disparity, the theoretical minimum depth
is bound by the maximum disparity value. By the introduction of an artificial
disparity shift (i.e. an artificial decrease in the denominator in (4)), the range
of the valid depth calculations can be modified. Using a shift of 86, the depth
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range is moved to be within approximately 99.83 mm and 246.08 mm, which
corresponds to the desired working range of the device.

3.2 Software

The acquired depth map and color image are further processed as outlined in
Fig. 2.

Preprocessing The preprocessing steps convert the raw data from the device
into the required format used by each algorithm (detailed in Section 3.2). There
are four main groups of preprocessing methods used: filtering of the raw depth
map, alignment of the the depth map with the color frame, color space conver-
sion, and image transformations (e.g. resizing and slicing).

There are a number of filters used to make up for various shortcomings of
the depth map, which in turn enhance its overall quality. The spatial noise
is corrected with a filter that smooths out variations in the depth map while
keeping the integrity of actual edges. This filter is based on a 1D exponential
moving average (EMA) calculation controlled by an extra parameter to preserve
the integrity of the edges in the depth map. The same filtering principle is also
applied in the time domain across consecutive depth maps to reduce temporal
noise, which manifests in small variations in the depth values for a static scene.
Finally, missing depth values (i.e. holes) in the depth map are filled in using the
neighboring left depth value.

Since both the color and the depth information is used by the segmentation
algorithms, it is important that the depth values be aligned with the color pixels.
The alignment is based on the inverse transformation of pixel coordinates to
camera coordinates using the intrinsic parameters of the cameras. Then, the two
frames are aligned using their measured extrinsic relation. Regarding the color
frames, three input domains are considered for the algorithms: RGB, HSV, and
a color and texture based [24] feature sets.

Segmentation Following the description in Section 1, the proposed system is
concerned with the accurate segmentation of close-range images of brick walls.
The task is interpreted as a pixel-wise classification problem using two distinct
classes: mortar and brick.

In total, there are eight classifiers investigated, of which the first one is the
k-nearest neighbor (kNN) algorithm [3]. This classifier assigns class allocation
based on the majority-class of k nearest neighbors of the data point. The second
classifier is the naive Bayes algorithm [28], which applies Bayes’ theorem with
a (naive) strong assumption of conditional independence between the features.
Another classifier which uses Bayes’ theorem is the quadratic discriminant anal-
ysis (QDA) [21], which applies a quadratic decision surface to discriminate the
different classes. The fourth classifier is the support vector machine (SVM) [7],
which separates the classes based on the maximum margin decision boundary
solution. The maximum margin refers to the fact that the decision boundary is



Image Segmentation Using a Fusion of ML Algorithms 7

selected such that it is as far away as possible from the classes. The fifth one is
the decision tree classifier [6], which recursively partitions the input space and
model each region locally. These regions are connected in a recursive manner.
An extension of the decision tree classifiers is the random forest model [5], which
fits a number of decision trees and combines their individual outputs using av-
eraging, thus improving the predictive accuracy. Another ensemble classifier is
the AdaBoost [10], which iteratively fits classifiers on the data, adjusting the
weights of incorrectly classified points at each iteration (i.e. forcing the subse-
quent classifiers to focus more on difficult examples). Finally, the last classifier is
the UNet deep learning model [20], which is a convolutional deep neural network
that outputs pixel-wise classification.

Each of these classifiers produces a binary segmentation (i.e. pixel-wise clas-
sification) of each preprocessed (as outlined in Section 3.2) input image indi-
vidually. During training, the outputs are used to adjust the parameters of the
models, while during inference, the masks are post-processed (see Section 3.2)
and then combined (see Section 3.2) to produce the final binary segmentation
mask.

Post-processing There are two types of post-processing methods applied to
each binary mask individually: morphological image processing and connected
components analysis, both of which aim to reduce the noise in the output and
produce homogeneous (complete) areas for the bricks.

The first method relies on applying morphological operations on the binary
mask. The applied morphological operation is the closing operation, which per-
forms a dilation and an erosion in this particular order on the input image. This
post-processing step closes the holes inside the brick regions, as well as removes
small brick-labeled objects from the frame (which are assumed to be noise due
to their small pixel size).

The second method is based on the connected components analysis of the
binary mask. Similarly to the morphology, the goal is to remove small patches of
foreground objects under the assumption that the bricks are expected to occupy
a large portion of the image. The labeling of distinct regions is based on a decision
tree approach presented in [8]. The analysis uses 8-connectivity, and produces
an output image where connected components are uniquely labeled. The size of
each of these components is determined simply by the amount of pixels they
occupy. If this area is smaller than a certain threshold, then the corresponding
pixels are set to 0 (i.e. background) in the mask. Since the connected components
analysis only considers foreground pixels, the same procedure is performed on
the inverted mask as well. Although the morphological transformation fills in
most of the holes inside the bricks, there could still be some left at this point.
By inverting the image, these small holes are now labeled by this algorithm, and
removed due to their area being below the threshold.

Fusion At the final step, the post-processed masks produced by all considered
classifiers are combined to form the final segmentation. The combination logic is



8 Roland Kajatin and Lazaros Nalpantidis

based on a weighted voting scheme. First, each classification algorithm is assigned
a specific weight based on their performance (see Section 4). The weights are
assigned by taking the softmax function of the selected performance metrics
(average of F1-score and accuracy) of the classifiers.

Let si denote the score of the ith classifier, then the weights are given by the
softmax function as

wi =
exp (si)∑
j exp (sj)

, (5)

where the denominator is the sum of the exponentials of all the scores. Using the
softmax function ensures that the weights sum up to 1, and that their relative
importance is guided by the performance of the corresponding classifiers. The
binary masks are multiplied by the corresponding weights and then summed up
to generate a single mask. Then, a threshold operation is performed to binarize
the combined mask and yield the final segmentation.

The value of the threshold is experimentally determined. If the threshold
is too large, the final mask will have a high confidence for the labeled brick
areas, but these will be smaller in size and less accurate around the edges. If the
threshold is too small, then the output will have brick areas with less confidence
around the edges. Therefore, it is important to select a threshold which retains
the accuracy around the edges, but still has a high confidence on the output
brick regions.

4 Experimental Evaluation

The evaluation of the proposed system outlined in Section 3 is first performed
for each algorithm individually. Once these performance scores are evaluated,
the weights are calculated as shown in (5), and the performance of the entire
system, using the combined mask, is again evaluated.

The evaluation is based on standard classification metrics. The binary classi-
fication problem at hand produces either a positive or a negative output (depend-
ing on the class) for each pixel, which means there are four possible scenarios:
true negative (TN), false negative (FN), true positive (TP), and false positive
(FP). These outcomes are encapsulated into the following metrics which are
used for the evaluation: recall, precision, specificity, negative predictive value,
F1 score, and accuracy [17].

4.1 Dataset

In order to train and test the machine learning classifiers, a dataset is created in
the following manner. The D435 is used to record four video streams of brick walls
under various environmental conditions, but only for reddish bricks. In total, 27
static frames are extracted from both the color and the depth streams. The depth
frame is preprocessed, according to the description in Section 3.2, therefore, it
is only necessary to apply the same preprocessing steps during inference, and
not during the training. The color and preprocessed depth frames constitute
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Recording 1 Recording 2

Recording 3 Recording 4

Fig. 4: Example color frames from each of the four recordings. Such color frames, to-
gether with the corresponding depth information, constitute the dataset. Note that
the four recordings are made under different lighting conditions. In (b), the recording
contains a shadow in the right side, while in (d), the bricks have multiple colors.

the entire dataset (i.e. four data points for each pixel location). A color frame
example from each recording is shown in Fig. 4.

The dataset is further diversified by three data augmentation processes: flip-
ping the image (i.e. mirroring along either the vertical or horizontal axis), chang-
ing the contrast, or adjusting the brightness. These modifications introduce some
variance, and noise into the frames, which in turn enable the algorithms to learn
parameters which can deal with these factors. These processes also mimic the
possible effects of the environmental conditions (e.g. lighting condition), as well
as the relative orientation of the camera with respect to the wall. Thanks to the
data augmentation step, the number of samples in the dataset is increased to
108 in total. Since each frame has a resolution of 848 × 480 pixels, the dataset
contains almost 44 million data points, each of which is a four-element vector
with the corresponding color and depth information.

The ground truth segmentation masks for each training sample are manually
created in the next step using Photoshop. These masks represent the perfect
segmentations, which are regarded as the 100% accurate outputs. These are
used both during the training of the algorithms, as well as during the evaluation
to compare the segmentation output with these perfect masks.

The dataset is split into training and test sets at a ratio of four to one. Each
split contains examples from each of the four recordings. Therefore, the final
training set contains 86 examples, and there are 22 in the test set. The training
set is used to train all of the machine learning classifiers, while the test set is
used to evaluate them.
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Table 1: Evaluation Results of the Chosen Classifiers

model domain recall precision specificity NPV F1 accuracy

kNN HSV 0.97 0.96 0.87 0.91 0.93 0.94
Naive Bayes HSV 0.98 0.89 0.65 0.92 0.85 0.90
QDA RGB 0.98 0.93 0.78 0.93 0.90 0.93
SVM HSV 0.98 0.95 0.83 0.94 0.92 0.94
Decision Tree HSV 0.97 0.95 0.85 0.91 0.92 0.94
Random Forest HSV 0.98 0.95 0.86 0.93 0.93 0.95
AdaBoost RGB 0.96 0.94 0.83 0.87 0.90 0.93
UNet RGB 0.98 0.95 0.84 0.93 0.92 0.94

Fusion 0.98 0.96 0.87 0.94 0.94 0.95

4.2 Results

The eight machine learning classifiers are evaluated individually in the first step.
The metrics are summarized in Table 1. As mentioned above, the F1-score and
accuracy metrics are used to determine the weight for each algorithm during the
fusion step.

The kNN was set up to use 3 neighbors, uniform weights for each neighbor-
hood, and the Euclidean distance measure. This classifier achieved one of the
best results in multiple metrics using the HSV color space. It outperforms all
other models in both precision and specificity. High precision means that the
kNN tends not to make false positive predictions compared to true positives,
while the high specificity score indicates that the model accurately classifies
most of the true negatives. Overall, this classifier achieved an F1-score of 0.93
and an accuracy of 0.94 on the test set.

The second model evaluated was the naive Bayes, which performed worst
among the eight classifiers. Although it handled the true positive cases well, it
struggled with the negatives. A low specificity value of 0.65 indicates that this
model made a large amount of false positive predictions compared to the true
negatives. It achieved an F1-score of 0.85 and accuracy of 0.9 using the HSV color
space. Due to the positioning of the camera close to the wall, a large portion of
the image is occupied by the positive class (i.e. bricks). Therefore, even the naive
Bayes classifier could achieve acceptable F1-score and accuracy, even though it
handled the negative class poorly.

Similarly to the naive Bayes, the QDA classifier shows the same results in
terms of predictive capabilities regarding the positive and negative classes, how-
ever, it performed better using the RGB color space. This is not surprising,
considering that the QDA also uses Bayes’ rule internally. Regardless, the over-
all performance of this classifiers is superior to that of the naive Bayes, with an
F1-score of 0.90 and accuracy of 0.93.

The support vector machine classifier was set up with a squared-exponential
kernel (i.e. RBF ), and a regularization parameter of 1, using the HSV color
space. Although the SVM achieved high evaluation scores, with an F1-score of
0.92 and accuracy of 0.94, the downside of using it is that there are 5240 support
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vectors in the trained exponential model for each class, so in total more than 10
thousand. Thus, the model takes a long time to make predictions, since there
are a great amount of cross products to be calculated for each input (and each
image has more than 400 thousand pixels).

The decision tree classifier, on the other hand, performs similarly to the SVM
(using the HSV color space, the F1-scores and accuracy metrics are the same),
yet this model is much faster than the SVM model. The decision tree, using
the HSV domain, has 875 nodes in total, however, since there are two classes,
each split only has two possible outcomes, and the maximum depth is set to
10 during training. So at most, there are 10 decision rules that each input goes
through. Thus, the decision tree classifier beats all of the previous classifiers,
with the exception of the kNN, simply because it is faster with better F1-score
and accuracy.

The random forest model adds a layer of complexity on the decision trees by
training 10 of them and having them vote for the most likely outcome. Natu-
rally, there are approximately 10 times as many nodes (i.e. 8598), however the
maximum depth of each tree is still 10. So each input pixel goes through 100 de-
cisions altogether. It also makes this classifier slower than the decision tree, yet
it achieves a slightly better performance. It has an F1-score of 0.93 and an accu-
racy of 0.95. Another insight into the random forest is the relative importance
of the features calculated as the normalized total reduction of the Gini index by
the given features in the whole model. In the case of the HSV-D color space, the
importances are: 0.307, 0.500, 0.111, and 0.082. The saturation channel alone
corresponds to half of the predictive value of this model. This is a consequence
of having a very low saturated mortar as one class and a somewhat saturated
brick class. The second most important feature is the hue channel. Although not
tested, this value is expected to drop on a multi-colored brick dataset, simply
because in the current case, the model is expecting a red brick as input. Finally,
not much emphasis is put on the depth input, which might be a result of having
the lowest variance within the depth values (i.e. the two planes are close to each
other).

The AdaBoost model was set up with a maximum number of 50 estimators,
a decision tree-based classifier, and a learning rate of 1. Although this classifier
handled the positive cases well, it has the lowest negative predictive value of
0.87. It means that AdaBoost predicted a significant amount of false negatives
compared to the true negatives. Overall, it achieved an F1-score of 0.90 and
accuracy of 0.93 (same as the QDA) using the RGB color space.

Finally, the training of the deep learning UNet model is slightly different from
the other classifiers. The same training set was used, however, this model required
a longer training process. The learning rate was set to 0.005 initially, and it was
reduced by 20% after every four epochs. The reduction of the learning rate should
allow the model to gradually close in on the optimal set of weights. Another
tweak of the training process has to do with the disproportionate representation
of the two classes. Since there are almost three times as many brick examples
than mortar, during the evaluation of the loss, if the classes are not represented
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Recording 1 Recording 2

Recording 3 Recording 4

Fig. 6: Binary segmentation masks for the inputs in Fig. 4 created with the final com-
puter vision system, which combines the individual outputs of the eight machine learn-
ing based classifiers (see Table 1).

equally, the model could learn to disregard the errors caused by misclassification
of mortar. Therefore, during the calculation of the loss, the contribution of the
brick pixels is reduced by 65%, such that it would match the weight of the
mortar contribution, which improves the performance of the UNet model. The
model was trained over 280 epochs with a batch size of 1 under 168 minutes.
The accuracy of the model using the RGB color space is 0.94 with and F1-score
of 0.92, thus it is slightly worse than the random forest, and on par with the
kNN classifier.

In order to combine the individual masks, the following weights are assigned
to each classifier shown in Table 1 from top to bottom, calculated according
to (5): 0.127, 0.119, 0.124, 0.126, 0.126, 0.127, 0.124, and 0.126. The kNN and
the random forest classifiers received the highest weights, while the naive Bayes
received the lowest weight (0.119). The threshold value used to binarize the
combined segmentation mask was determined experimentally by looking at the
performance of the entire vision system on the test set. Finally, a value of 140
was used as the threshold, and the combined vision system achieved an F1-
score of 0.94 and accuracy of 0.95 (see Table 1). The system has equally high
recall and precision scores, which means that there are not many misclassified
pixels in the output. In total, there were almost 9 million data points in the test
set. Approximately 3.25% of the predictions were false positive, and 1.44% were
false negative. The false positives often have an effect on the accuracy around
the edges of the bricks, however, having false positives would only cause the
robotic platform to be less thorough during the milling. False negatives, on the
other hand, indicate to the robot that there is mortar to be milled, where in
reality it is actually brick.



Image Segmentation Using a Fusion of ML Algorithms 13
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Fig. 8: Overlay of the final segmentation masks shown in Fig. 6 on the inputs shown
in Fig. 4. The output masks were inverted to mask out the brick areas, so that the
accuracy of the system around the edges of the bricks would be visible.

The final segmentations of the four example inputs in Fig. 4 are shown in
Fig. 6. Using the combination of classifiers produces the best overall segmenta-
tion in all four recordings at the same time. The first and third masks are the
most accurate. The system is able to handle the shadows in Fig. 5b, however, it
struggles most with the fourth example in Fig. 5d.

The masks are overlaid on the example inputs in Fig. 8. These images intend
to show the accuracy of the masks around the edges of the bricks. The masks
in Fig. 7a and Fig. 7c have a high accuracy at the edges, which would allow
the robot to mill most of the mortar away without damaging any of the bricks.
The mask in Fig. 7b is also accurate in most areas of the image, except for the
lower right side in the shadow. The mask in Fig. 5b has a hole in the brick
area at the bottom right corner, however, the opening at the top edge of this
brick is narrow. Since the hole does not go through the entire brick area, it is
not a mortar channel. Finally, the segmentation overlay in Fig. 7d is the least
accurate one. The small protruding false brick classifications could be ignored to
some extent by reducing the shape to a more regular rectangular one (assuming
the bricks have rectangular shapes). However, the most serious issue is the upper
left corner of the large brick in the middle, which is not classified as brick. This
would indicate to the robot that there is mortar there, which would mill away
the corner of the brick.

5 Conclusion and Discussion

This paper has presented a computer vision system used to produce accurate
binary segmentation masks of close-range images of brick walls. The advantages



14 Roland Kajatin and Lazaros Nalpantidis

of the presented approach are cost effectiveness (it requires only cheap hardware
with stereo vision capabilities, e.g. the Intel RealSense D435), accuracy (achieved
by combining the results from a number of classifiers), and flexibility (the system
can easily be expanded with additional classifiers). The performance of vision
system was evaluated on around 9 million data points with a final F1-score of
0.94 and accuracy of 0.95. The segmentations shown in Fig. 6 are accurate in
most cases, with minor issues for areas in the shadow (Fig. 5b) and multi-colored
bricks (Fig. 5d).

In order to further enhance the final segmentation, the threshold operation
could be modified to be more dynamic. For instance, one could try to find brick
shapes (i.e. rectangles) at different gray-levels in the combined mask. It is equiv-
alent to localizing the threshold, instead of using a single global threshold value.
In this case, one could train classifiers that work well, for instance, on shadowy
areas, and then use a local threshold value (or even a higher local weight) for
such parts of the image. Thus, the final mask would be more accurate, using
local information for the binarisation process.
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