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Abstract. Construction spaces are constantly evolving, dynamic envi-
ronments in need of continuous surveying, inspection, and assessment.
Traditional manual inspection of such spaces proves to be an arduous and
time-consuming activity. Automation using robotic agents can be an ef-
fective solution. Robots, with perception capabilities can autonomously
classify and survey indoor construction spaces. In this paper, we present a
novel identification-on-the-fly approach for coarse classification of indoor
spaces using the unique signature of clutter. Using the context granted
by clutter, we recognize common indoor spaces such as corridors, stair-
cases, shared spaces, and restrooms. The proposed clutter slices pipeline
achieves a maximum accuracy of 93.6% on the presented clutter slices
dataset. This sensor independent approach can be generalized to vari-
ous domains to equip intelligent autonomous agents in better perceiving
their environment.
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1 Introduction

Large-scale construction spaces need periodic surveying, inspection, and ren-
ovation [3]. Continuous assessment helps to identify the completion status as
well as localize problems which may arise [I]. Traditionally, this requires a well-
coordinated surveillance activity which consumes enormous man-hours, even re-
sulting in delays and overheads. Further, the inherent complexity of such spaces,
in terms of design, inter-connectivity, and scale complicate this already ardu-
ous undertaking. Automation of processes in such activities has the potential
to greatly reduce the effort required and boost overall productivity, at the same
time reducing overhead costs and delays. This need for process automation in the
complex and fast-paced world of construction calls for innovation at all levels.
Inspection and surveying of outdoor large-scale construction activities now
utilizes satellite imagery and Global Positioning Systems (GPS) based local-
ization [I5I5]. While these methods are robust and cost effective solutions for
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outdoor spaces, they prove to be in-effective for indoor spaces. Moreover, indoor
GPS-based navigation is not effective for multi-level structures and the signal
in itself becomes unreliable [5]. Alternative solutions including WiFi signals and
quantum sensors require expensive equipment for implementation [4]. Further,
these limitations of expenses, time, and resources for efficient inspection and
surveillance is withholding the extensive application of Building Information
Modelling (BIM) in construction activities [IJI0]. Robotic technologies, such as
mobile robots, rovers, and aerial manipulators, are proving to be an efficient
automation solution for construction activities [2]. Mobile robots, such as aerial
manipulators (UAV) [7] and ground-based manipulators (wheeled and legged)
[12] are a cost-effective solution for real-time large scale inspections due to their
robust and reliable performance.

Mobile robots with capabilities of perception are proving to be a paradigm
shifting technology in inspection and surveillance. Perception sensors such as
LiDARs (2D and 3D), stereo cameras, RGB-D cameras, ultrasonic and infrared
proximity sensors have been extensively used in robot vision to identify the sur-
rounding of a robot and its subsequent localization [9J14]. This is similar to hu-
man perceiving their surroundings through multiple modal sensing. For example,
humans use vision and their knowledge base to comprehend the characteristics
of a construction site. They also use tactile sensing to provide an understanding
over various states and properties of surfaces [I2/I3]. However, humans have the
ability to inherently perform these identification procedures as a secondary task,
while performing primary targeted tasks such as reaching a target location, nav-
igating among obstacles, etc. We call this identification-on-the-fly as it enables
multi modal perception for intelligent and self-adaptive systems. [8]. Extend-
ing this methodology to coarse identification and classification of indoor spaces
yields systems capable of multi-modal perception and intelligent operation yet
efficient, especially for BIM development.

In this paper, the identification-on-the-fly method is used to coarsely identify
human-built spaces based on the distribution of clutter. Each space has its own
distinct signature. Clutter, the things which occupy space in an indoor environ-
ments such as doors, desks, and wall fittings, grant context to a space. The aim
of this study is to develop the ability to identify and classify spaces based on this
inherent signature. Hence, we present a unique sensor independent approach for
classifying indoor spaces based on their inherent signatures. A sensor indepen-
dent approach allows generalization of this method to numerous avenues and
also allows for fast and inexpensive implementations.

In order to develop and validate this approach, we first present the Clutter
Slices dataset. This initial dataset is developed with 2D LiDAR scans of indoor
areas, such as staircases, washrooms, corridors, and shared spaces; spaces are
common to most developments. We then propose the clutter slices pipeline which
utilizes commonly used classifiers to train and subsequently test the approach
on the collected dataset. Hence, the contributions of this study are as follows:

— The Clutter Slices dataset of common indoor spaces along with the analysis
of its distribution. This dataset is publicly available.



Clutter Slices Approach for Identification-on-the-fly of Indoor Spaces 3

— The clutter slices classification pipeline, including widely used classifiers,
is presented. The evaluation of this model on the clutter slices dataset is
presented as a baseline.

— A new pipeline for clutter slices classification independent of sensor type,
including widely used classifiers. The evaluation of this model on the clutter
slices dataset is presented as a baseline.

— Performance analysis of the selected classifiers in the proposed pipeline is
presented on the clutter slices dataset.

The organization of this paper is as follows: Section 2 describes the
Identification-on-the-fly approach using clutter slices to decipher the unique sig-
natures of indoor spaces. Further, Section 3 presents the Clutter Slices dataset.
In this section, we describe the methodology of data collection and the structure
of the dataset. Section 4 presents the model and the classification methods used
on the Clutter Slices dataset for identification of spaces. Experiments and results
are presented in Section 5, followed by the conclusion in Section 6.

2 Identification-on-the-fly

Embedding intelligence and self-adaptive features into robots requires them to
perform multi-modal tasks, simultaneously, to extract a rich understanding of
their environment. Such rich comprehension is based on contextual as well as
state information of the environment which is extracted while navigating or in-
teracting with it. Humans, exhibit this quality of multi-modal perception and
cognition, which helps them decipher the surroundings in a way that they are
even able to navigate unseen environments. Moreover, humans are able to per-
form such navigation and classification as a secondary task, while the goal of
such movement can be varied. Example scenarios would include identification of
different areas while navigation, using vision and tactile sensing to understand
the current state of a surface or object. Another such example is performing
status checks while navigating an unseen construction space. Identification-on-
the-fly incorporates this ability of comprehending the unseen environment as
an almost intuitive capability (performed as a secondary task) into autonomous
robots, thereby taking them one step closer to human-like intelligence.

In this paper, an identification-on-the-fly approach is utilized to address prob-
lems associated with coarse identification of human-built indoor spaces while
navigating through them. This is accomplished based on an intuitive assumption
that each class of space has its own unique signature. Moreover, common spaces
exhibit similar patterns as they are built for specific purposes, such as staircases,
corridors, etc. Hence, these unique signatures can be generalized throughout in-
door spaces to learn and recognize the class of spaces for unseen environments
too.

2.1 Indoor Construction Spaces

Indoor construction spaces are unique environments in the sense that they have
both static and dynamic elements. While the structure and walls may not change
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significantly over the course of time, the dynamic objects such as furniture,
fittings, etc. can change drastically even over a short period of time. These
changes pose a challenge to most autonomous system which rely on precise and
real-time mappings. However, the coarse signature of the space remains rather
constant. In this study, we leverage the overall signature of a space for coarse
classification of the space.

2.2 Clutter-Slices

Clutter is the class of things which add context to a room. A room is primarily
just four walls, however, if there are stairs in it then it becomes a staircase.
Similarly, if the stairs are replaced by desks, it becomes a working space. Hence,
there is inherent information, albeit coarse, in the distribution of objects in a
four wall enclosure. Moreover, there is also information in the structure of the
placement of the four walls. A corridor and an office, both have four walls but
the structure is inherently dissimilar. The clutter-slices method leverages this
inherent information in the distribution of objects and the basic structure of the
enclosed spaces to classify the human-built environments.

Clutter includes both static (wall fittings, doors, pillars, sinks) and dynamic
objects (tables, chairs, table-top equipment, humans, cabinets). These objects
occupy the scans with respect to their position in the environment. At different
heights, different objects appear on the scan relative to their position in the
environment, as illustrated in Fig. [I] Based on the information available from
the clutter-slices, different indoor facilities can exhibit unique distributions.

-

I

Fig. 1. 2D lidar scans of a room at multiple heights
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Clutter slices do not just coarsely map the area, but they also coarsely localize
the observer in the scene. The information from clutter slices enables abstraction
of details such as the closeness of the observer to ceiling or ground and to the
nearby walls. This information can be used to estimate the pose of the observer
in the scene and subsequently map their trajectory.

3 Clutter Slices Dataset

Robust identification of construction spaces, especially indoor spaces, needs in-
telligent models that can comprehend the environment efficiently. The first step
in building such models is creating adequate datasets for training. Hence, we
present a diverse dataset of real-life indoor spaces. The clutter slices dataset
is a collection of scans of common indoor spaces, such as corridors, staircases,
restrooms, and large shared spaces (including cafeterias, common areas, and
shared working offices), as shown in Fig. [2l This is a fully annotated dataset
which enables models to learn the distribution of clutter in such common areas,
and thereby contributes to efficient recognition of spaces.

Fig. 2. Images and respective 2D LiDAR plots of indoor spaces with the sensor cap-
turing scans of (a)Corridor and (b) Staircase.

The Clutter Slices dataset was created by taking two-dimensional (2D) Li-
DAR scans of areas such as restrooms, staircases, shared spaces and corridors
around the various buildings of Purdue University. We chose a LiDAR sensor
for this data collection as it is one of the most widely used sensors in navigation
and mapping in robotic vision. Using this sensor, we measure spatial distribution
270° around a point, as shown in Fig. 2l The maximum range of this sensor is
30 meters. Various positions around the space were used for the data collection
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to ensure a holistic capture of data. The height of the data collection was varied
in steps of 1 meter.

Class Frequency

Frequency

Staircases Corridor Restrooms SharedSpaces
Class

Fig. 3. Frequency Distribution of Classes of Clutter Slices Dataset

There are four classes in the Clutter Slices dataset: corridors, staircases, re-
strooms, and large shared spaces. These classes are common to most indoor
construction areas and hence are useful for researchers in future work. The dis-
tribution of instances of these classes in the dataset are shown in Fig. [3} The
dataset is publicly available at https://github.com/CRLPurdue/Clutter_Slices

[11].

4 Clutter Slices Pipeline

The clutter slices approach with identification-on-the-fly aims to understand
inherent patterns in the data, rather than relying on explicit feature engineering.
Hence, by just using the distances of clutter around a point, we derive a clutter
slice at a fixed height. A stack of these slices would build the clutter signature of
the space. However, the goal here is to understand the strength of just a single
clutter slice in deriving the class of a space. Therefore, we use a single 2D scan
of the space to understand the distribution of clutter and subsequently, classify
it.

In the clutter slices pipeline, the input 2D scan is translated to distances
around the point. This allows for use of multiple sensors, as a variety of sensors
such as LiDARs, cameras, and infrared sensors can be used to get the distance
measurements. These distances are then vectorized as the feature space D;,
wherein D; = [D; o, ..., Di a70]. The labels for this feature space are defined as
y; where i € [0, 3] for the clutter slices dataset. The feature space is then scaled
using Box-Cox power transformations to standardize the data. The prepared
data is then input to the classifiers. In this study, we used six classifiers which
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Fig. 4. Flowchart of Clutter Slices Pipeline

Decomposition

are widely used in machine learning: Random Forests, Logistic Regression, Sup-
port Vector Machines, AdaBoost, Artificial Neural Network, and Convolutional
Neural Network. These classifiers present a baseline on the clutter slices dataset,
and prove its effectiveness.

5 Experiments and Results

The validation of the proposed pipeline on the clutter slices dataset using the
selected classifiers is presented in this section. We first present the experimen-
tal setup, including the hyperparameters selected for the classifiers, and conse-
quently, present the performance in terms of accuracy, precision and recall for
the classifiers.

5.1 Experimental Setup

The experiments were conducted with the Clutter Slices dataset using the de-
scribed pipeline with six classification models. Since this is a multi-class clas-
sification task, the dataset was stratified and shuffled, then split into a train
and test set with an 80-20 ratio. We followed a five fold cross validation to en-
sure coverage of the entire dataset. The scikit-learn implementation of Random
Forests (RF), Adaboost, Suppport Vector Machine (SVM), and Logistic Regres-
sion (LR) were all used [6]. A total of 100 estimators were used for RF with the
total depth of 100. In case of Adaboost, the number of estimators used were 200.
The polynomial kernel was used for SVM.

The architecture of the artificial neural network (ANN) constitutes of six
fully connected dense layers. The number of units in the layers are: 481,364,
256, 125, 50 and 4. The last layer has Softmax activation with rectified linear
units (ReLU) activation being used for the previous layers. We also incorporated
two dropout layers in this network. The architecture of the convolutional neural
network (CNN) comprises of two convolutional layers followed by a MaxPooling
layer and three dense, fully-connected layers. The dense layers have 125, 50 and
4 units, respectively. Dropout and input flattening layers were also used in this
network. Softmax activation was used at the last layer with ReLU being used
in all others. The CNN and the ANN, both used the Adam optimizer with a
learning rate of 0.01. The categorical cross-entropy was used as a measure of
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loss. Both neural network models were trained for 30 epochs with a mini-batch
size of 32.

The training and testing was conducted on a computer with 32GB RAM,
NVIDIA GTX 1080 Ti GPU and Intel Core i9 CPU.

Table 1. Accuracy on test set for the Clutter Slices Dataset

Classifiers ‘ Cross validation Accuracy

‘ Overall Accuracy

|1st Fold|2nd Fold|3rd Fold|4th Fold|5th Fold|

\ RF | 0.907 | 0.88 | 094 | 096 | 094 | 0.928+0.03 |
| AdaBoost | 057 | 0.396 | 053 | 0.60 | 037 | 0.495+0.09 |
\ SVM | 0.83 | 0.88 | 0.867 | 0.924 | 0.886 | 0.88+0.03 |
|Logistic Regression| 0.759 | 0.849 | 0.83 | 0.79 | 0.849 | 0.8240.035 |
\ CNN | 0.907 | 0.905 | 0.94 | 096 | 096 | 0.936+0.03 |
\ ANN | 0.87 | 0.87 | 0925 | 0.96 | 0.89 | 0.90+0.04 |
5.2 Results

The tests were performed using the Clutter Slices dataset. The accuracy of the
six classifiers for each fold, along with the overall accuracy is presented in Table
The results indicate that the clutter slices dataset is able to present enough
information for recognition of classes, even with just a single scan as input. While
random forests, CNN, and ANN models showed more than 90% accuracy, models
like SVM and Logistic regression also showed good performance with very little
hyper-parameter tuning. The low accuracy of Adaboost can be attributed to
over-fitting by the model.

Figure [5| shows the class-wise precision recall curves for the overall perfor-
mance of the six classifiers. These curves highlight that the models were able
to identify classes Staircases and Shared Spaces without much loss, but Re-
strooms and Corridors were showing overlap with other classes. The overlap can
be intuitively explained as restrooms can have characteristics similar to shared
spaces. Nevertheless, despite these challenges, the area-under-the-curve (auc)
values prove the performance of these models.
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Fig. 5. Overall classifier performance

6 Conclusion

In this paper we introduce the identification-on-the-fly approach to imbue
human-like intelligence into robotic systems. The proposed clutter slices ap-
proach leverages the unique signatures of common indoor spaces for coarse clas-
sification. The initial validation of the clutter slices approach is performed on
the dataset using 2D LiDAR sensor. Further, we present a scalable pipeline
that supports this approach. The pipeline is flexible enough to accommodate
varied classifiers. We used some of the widely used classifiers such as random
forests, logistic regression, and neural network models to establish a baseline for
the dataset. A maximum accuracy of 93.6% was achieved with this approach
without significant hyperparameter tuning. The precision-recall plots show the
convergence of the models in recognizing the classes of spaces.

The clutter slices approach captures the unique signatures of common indoor
spaces and proves the potential of this approach in their coarse classification.
Nevertheless, the clutter slices approach is not sensor specific and can be poten-
tially generalized across domains. In the future, this approach of identification-
on-the-fly can be an essential tool for perceiving and assessing surroundings
of intelligent autonomous agents. Clutter slices is one implementation of the
identification-on-the-fly method used for coarse classification of indoor spaces,
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adding contextual information to the robot perception. However, there are end-
less opportunities to perform identification-on-the-fly to understand the sur-
rounding while still identifying potential dangers and outcome of future actions.
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