Skip to main content

A Video-Based MarkerLess Body Machine Interface: A Pilot Study

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12662))

Included in the following conference series:

Abstract

Regaining functional independence plays a crucial role to improve the qualify of life of individuals with motor disabilities. Here, we address this problem within the framework of Body-Machine Interfaces (BoMIs). BoMIs enable individuals with restricted mobility to extend their capabilities by mapping their residual body movements into commands to control an external device. In this study, we propose a video-based marker-less interface that can track the position of the shoulders and the head using a state-of-the-art approach relying on the DeepLabCut (DLC) architecture. The high-dimensional body signal is then mapped into a lower dimensional space via non-linear variational autoencoder to obtain commands for a 2D computer cursor. First, we perform an offline test to evaluate the prediction power of the DLC fine tuned model. Then, we verify whether the proposed pipeline can be used to control a computer cursor in real-time. Results showed that the network can accurately predict the position of body landmarks. Moreover, an unimpaired participant was able to efficiently operate the computer cursor and gain a high-level of control skill after training with the interface. This enables performing experiments with video-based marker-less BoMIs for future implementation of an assistive device for people with motor disabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betke, M., Gips, J., Fleming, P.: The camera mouse: visual tracking of body features to provide computer access for people with severe disabilities. IEEE Trans. Neural Syst. Rehabil. Eng. 10(1), 1–10 (2002)

    Article  Google Scholar 

  2. Casadio, M., et al.: Functional reorganization of upper-body movement after spinal cord injury. Exp. Brain Res. 207(3–4), 233–247 (2010)

    Article  Google Scholar 

  3. Casadio, M., Ranganathan, R., Mussa-Ivaldi, F.A.: The body-machine interface: a new perspective on an old theme. J. Motor Behav. 44(6), 419–433 (2012)

    Article  Google Scholar 

  4. Chen, Y.L., Tang, F.T., Chang, W.H., Wong, M.K., Shih, Y.Y., Kuo, T.S.: The new design of an infrared-controlled human-computer interface for the disabled. IEEE Trans. Rehabil. Eng. 7(4), 474–481 (1999)

    Article  Google Scholar 

  5. Colyer, S.L., Evans, M., Cosker, D.P., Salo, A.I.: A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med.-open 4(1), 24 (2018)

    Article  Google Scholar 

  6. Cook, A.M., Polgar, J.M.: Assistive Technologies-E-Book: Principles and Practice. Elsevier Health Sciences (2014)

    Google Scholar 

  7. Di Mattia, P.A., Curran, F.X., Gips, J.: An eye control teaching device for students without language expressive capacity: EagleEyes, vol. 53. Edwin Mellen Press (2001)

    Google Scholar 

  8. Fu, Y., Huang, T.S.: hmouse: head tracking driven virtual computer mouse. In: 2007 IEEE Workshop on Applications of Computer Vision (WACV’07), pp. 30–30. IEEE (2007)

    Google Scholar 

  9. Grossi, G., Lanzarotti, R., Napoletano, P., Noceti, N., Odone, F.: Positive technology for elderly well-being: a review. Pattern Recogn. Lett. 137, 61–70 (2020)

    Article  Google Scholar 

  10. Higgins, I., et al.: beta-vae: learning basic visual concepts with a constrained variational framework (2016)

    Google Scholar 

  11. Javanovic, R., MacKenzie, I.S.: MarkerMouse: mouse cursor control using a head-mounted marker. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010. LNCS, vol. 6180, pp. 49–56. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14100-3_9

    Chapter  Google Scholar 

  12. Jeong, H., Kim, J.S., Son, W.H.: An emg-based mouse controller for a tetraplegic. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1229–1234. IEEE (2005)

    Google Scholar 

  13. Kane, G., Lopes, G., Sanders, J., Mathis, A., Mathis, M.: Real-time, low-latency closed-loop feedback using markerless posture tracking. BioRxiv (2020)

    Google Scholar 

  14. Kim, S., Park, M., Anumas, S., Yoo, J.: Head mouse system based on gyro-and opto-sensors. In: 2010 3rd International Conference on Biomedical Engineering and Informatics, vol. 4, pp. 1503–1506. IEEE (2010)

    Google Scholar 

  15. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  16. Mathis, A., et al.: Deeplabcut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21(9), 1281–1289 (2018)

    Article  Google Scholar 

  17. Meihlbradt, J., et al.: Data-driven body-machine interface for the accurate control of drones. Proc. Natl. Acad. Sci. 115(31), 7913–7918 (2018)

    Article  Google Scholar 

  18. Moro, M., Marchesi, G., Odone, F., Casadio, M.: Markerless gait analysis in stroke survivors based on computer vision and deep learning: a pilot study. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 2097–2104 (2020)

    Google Scholar 

  19. Pierella, C., et al.: Learning new movements after paralysis: results from a home-based study. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  20. Rizzoglio, F., Pierella, C., De Santis, D., Mussa-Ivaldi, F.A., Casadio, M.: Ahybrid body-machine interface integrating signals from muscles and motions. J. Neural Eng. (2020)

    Google Scholar 

  21. Thorp, E.B., et al.: Upper body-based power wheelchair control interface for individuals with tetraplegia. IEEE Tans. Neural Syst. Rehabil. Eng. 24(2), 249–260 (2015)

    Article  Google Scholar 

  22. Zhou, H., Hu, H.: Human motion tracking for rehabilitation–a survey. Biomed. Signal Process. Control 3(1), 1–18 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Moro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moro, M., Rizzoglio, F., Odone, F., Casadio, M. (2021). A Video-Based MarkerLess Body Machine Interface: A Pilot Study. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12662. Springer, Cham. https://doi.org/10.1007/978-3-030-68790-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68790-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68789-2

  • Online ISBN: 978-3-030-68790-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics