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Abstract. Scarcity of training data is one of the prominent problems
for deep networks which require large amounts data. Data augmentation
is a widely used method to increase the number of training samples and
their variations. In this paper, we focus on improving vehicle detection
performance in aerial images and propose a generative augmentation
method which does not need any extra supervision than the bounding
box annotations of the vehicle objects in the training dataset. The pro-
posed method increases the performance of vehicle detection by allowing
detectors to be trained with higher number of instances, especially when
there are limited number of training instances. The proposed method is
generic in the sense that it can be integrated with different generators.
The experiments show that the method increases the Average Precision
by up to 25.2% and 25.7% when integrated with Pluralistic and DeepFill
respectively.
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1 Introduction

Computer vision applications on drone images are gaining importance with the
need for automated analysis of increasing amounts of image data captured by
drones. Object detection and image recognition tasks for vehicles and pedestri-
ans, are at the heart of many applications such as surveillance. On the other
hand, processing of aerial images comes with different challenges as the objects
are relatively small and the data collection process is costly and done in uncon-
trolled environments, limiting the number of images in the datasets. Detection
of small objects is generally handled by modifications on the detection network.
For the lack of sufficient data, data augmentation techniques are used. Recently,
Generative Adversarial Networks [6] and Variational Autoencoders [8] have been
shown to generate realistic synthetic images. In this paper, we propose a data
augmentation method using these generative networks.

Workshop on Analysis of Aerial Motion Imagery (WAAMI 2020) in conjunction with
25th International Conference on Pattern Recognition (ICPR 2020)
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Typically, the number of annotated instances in aerial image datasets are
relatively low compared to the common datasets such as COCO [10] and Pascal
VOC [5]. In this work, we aim to improve vehicle detection performance in
aerial images by synthetic data augmentation on training images. The proposed
framework consists of a generator, which generates candidate samples, and an
independent detector which evaluates the quality of the samples. The framework
is independent from the generator network models, and any generative network
capable of image inpainting can be integrated.

2 Related Work

Data augmentation plays a key role in many data-driven neural network tasks
such as object detection and object classification. Until recent advances, for
visual tasks, data augmentation is mainly provided with spatial and intensity
based modifications of images or instances. Even though it is not a guaranteed
way of improving performance of a model, classical data augmentation methods
are widely accepted as a primary solution to overcome scarcity of data because
of ease of implementation. These techniques are mostly useful and applicable
for almost all object detection tasks. These methods can be mainly grouped as
geometrical and color based transformations. Each transformation method has
its own advantages and might work better than other techniques under differ-
ent conditions and for different data distributions. When the main requirement
for the model is robustness to varying illumination, color based illuminations
might work perfectly even for small scale datasets. If the angle of the object
changes during inference, geometric transformations might be much more help-
ful to improve the performance. Okafor et al. [13] used multi-orientation data
augmentation to improve the classification of single aerial images of animals.
They transform an input image to a new single image containing multiple ran-
domly rotated versions the input image. Chen et al.[1] used data augmentation
for CNN-based people detection in aerial images. They applied image rotation,
perspective transformation and border padding on aerial images. The main dis-
advantage of these methods is that they are not adding any distribution by
discovering features of the data. If the task is to detect or classify classes when
training set lacks necessary variety, this can not be considered as a good solution.

In addition to the traditional data augmentation methods, a number of re-
cent approaches focus on data augmentation by copying existing object instances
onto the existing training images [9] [4] [3]. In [9], the ideal locations to place
an object together with the best fitting pose of an instance for that scene are
estimated. The idea is to provide locations for inserting objects into semantic
maps using semantic segmented images to train generator network, since the
purpose is placing generated objects visually plausible places in semantic maps,
this idea is not defined as an augmentation for detection or classification tasks.
In [4] [3], a matching score between an object and an image is calculated for
augmentation. To prevent boundary artifacts, they use segmented annotated in-
stances while choosing their data to be augmented. These set of methods are
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based on copying instances into different images without generative modelling.
PSGAN [14] handles this contextual instance insertion problem by using a neural
network based architecture having two discriminators and one generator. One
of the discriminators is responsible for generating the instances and the other
generates suitable patches for the generated instances. It uses spatial pyramid
pooling layer to generate varying size instances. However, this approach has to
deal with instances with artifacts due to the nature of generative networks.VS-
GAN [21] also uses a 2 stage discriminator strategy for vehicle detection using
least square loss in generator, and validates the augmentation with YOLOv3 and
RetinaNet detectors. Since it is required to generate high quality synthetic sam-
ples, it was trained with a large scale dataset having car instances. DetectorGAN
[11] has added a detector network into the generator-discriminator loop of PS-
GAN network to have more realistic outputs. This approach is highly dependent
on training the discriminator branch which might require training parameters to
be changed per subject. Another approach [7] for medical studies keeps geomet-
ric and intensity information intrinsically while generating instances. In aerial
images, [12] to ours augments aerial images using image-to-image translation by
conditional GANs. It is based on mapping the layout into another one while
keeping instances which requires layout annotation. In our framework, we don’t
propose a new generator model but use generator and detector modules sepa-
rately which is a generic approach for the problem. It prevents the generator
overfitting and provides diverse and realistic augmentations. Also with the given
parameters, cost and quality trade-off can be arranged.

3 Background

The proposed method consists of a generator network and a detector network.
The generator network is expected to generate new instances that fits the given
background and the detector network must be able to detect corresponding in-
stances with bounding boxes. The networks must be generic networks that can
work with different instance classes. For the experiments, we have selected Plu-
ralistic Image Completion as generator network and Tiny YOLOv3 as detector
network. In this section, we explain the selected networks and performance met-
rics for the experiments.

3.1 Pluralistic

Pluralistic Image Completion [20] is an algorithm for one-to-many image comple-
tion tasks. In image completion, there is usually only one ground truth training
instance per label which results in generated samples having limited diversity.
To overcome this, Pluralistic uses two parallel paths, one is reconstructive and
the other is generative, both are supported by GANs. The input images are
partially masked to create synthetic holes. The algorithm generates diverse, re-
alistic and reasonable images with completed holes. Let us define the original
image as Ig, the partially masked image as Im, and the complement image as
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Ic. While the classical image completion methods attempt to reconstruct the
ground truth image Ig in a deterministic fashion from Im, Pluralistic aims to
sample from p(Ic|Im). The reconstructive path combines information from Im
and Ic, which is used only for training. The generative path infers the con-
ditional distribution of masked regions for sampling. Both of the paths follow
Encoder-Decoder-Discriminator architecture. We used Pluralistic network as the
generator model to generate car instances on given backgrounds.

3.2 Tiny YOLOv3

YOLO [16] is a state-of-the-art, real-time object detection system. It uses a single
optimized end-to-end network to predict bounding boxes and class probabilities
directly from full images in a single pass. YOLOv1 introduced the concept of
directly regressing object coordinates from the image instead of using region
proposal networks such as Faster-RCNN [18]. Starting from YOLOv2, the system
used anchor boxes for regressing object coordinates. YOLOv3 is trained with a
different class prediction loss formula and makes detection at three different
scales.

We used Tiny YOLOv3 [17] for experiments which is a smaller version for
constrained environments. Since the aim of the proposed method is not to get the
best detection performance among different models but to improve the perfor-
mance of a base model by augmentation, we selected it considering its relatively
low training/inference time.

3.3 Metrics

There are 2 common metrics for evaluating the detection performance. Intersec-
tion over union (IoU) is used for evaluating localization performance. It is the
ratio of overlap (intersection) of predicted and ground-truth locations over union
of predicted and correct locations (Eq. 1) where Bg and Bp are the ground truth
and predicted bounding boxes of the object.

IoU(Bg, Bp) =
|Bg ∩Bp|
|Bg ∪Bp|

(1)

The result is between 0 and 1 indicating the ratio of correct prediction. If the
prediction score is above the threshold, it is counted as a correct prediction.

Average Precision (AP) is the area under the precision-recall curve. It is
commonly used to evaluate detection performance. Considering the correct pre-
dictions as true positives (TP ), incorrect predictions as false positives (FP ),
and no predictions for an instance as false negatives (FN), we can formulate
precision, recall and AP as in Eq. 2:

precision =
TP

TP + FP
recall =

TP

TP + FN
AP =

∫ 1

0

p(r)dr (2)
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Fig. 1. Schematic of the proposed method. Top: Training stage, Bottom: Augmentation
stage

4 Proposed Method

The proposed method consists of 2 stages: training and augmentation. Train-
ing stage involves independent training of a generative network and a detector
network. At the augmentation stage, the generative network is used to generate
new samples and the detector is used to assess the feasibility of these samples for
augmentation. An augmented training set is formed using the samples which are
deemed feasible after this assessment. This training set then can be used during
training of a detector to improve the detection performance. The schematic of
the proposed framework is shown in Fig. 1.

4.1 Training Stage

The generator and detector networks are trained with image patches since the
aim is to generate patches containing new instances. Both networks are fed
with the same patches, extracted around the object instances from the training
images. At the end of the training stage, the generator network learns to generate
realistic instances on the given patches. The detector is trained with bounding
box annotations and the best network parameters which has the highest average
precision is selected for the augmentation stage.

4.2 Augmentation Stage

At this stage, the aim is to generate new object instances on the original images.
First, 96x96 patches from random locations are extracted and their central 48x48
areas are masked. If the masked holes intersect with the existing instances, the
patch is discarded and a new image is used for the patch extraction. The patches
are fed into the trained generative model to generate synthetic object instances,
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which are expected to be located at the center of the patches. Then, the gen-
erated data is fed to the detector to evaluate whether the generated sample is
acceptable to use for augmentation. For this purpose, the confidence score of
the detector model, which reflects the confidence in identifying the generated
instance, is used. The generated sample is accepted if the confidence score is
higher than the predetermined threshold. If the generated sample is not realistic
or it has artifacts, it is expected to have a low confidence score. In this case, the
augmentation stage starts over with the next image from the training set since
the current image may not be suitable for augmentation. If the generated sample
is accepted by the detector, the original image is augmented with the generated
instance at the extracted patch location. The augmented set is formed by adding
a predetermined number of new instances into the raw train set.

5 Experimental Results

5.1 Setup

Dataset We used Vehicle Detection in Aerial Imagery (VEDAI) [15] dataset
which has 1272 RGB color images at 1024x1024 resolution. All images are an-
notated with bounding boxes for labels such as car, boat and motorcycle. We
have selected “car” instances for our experiments. There are a total of 1377 car
instances in the dataset. Object instances larger than 48x48 pixels (less than
3% of all instances) are discarded as mentioned below. We divided the dataset
as 500 and 772 for training and testing respectively. Only a part of the training
set was used for experiments since we aim to improve the performance on small
training datasets. 96x96 patches have been extracted around car instances from
the training images which have a total of 490 car instances. The images have
been down-scaled to the default input resolutions for performance evaluation.

Patch Size Selection We analyzed the instance sizes in the dataset to select
the appropriate patch size. The histogram of all instances in the dataset are
shown on the left side of Fig. 2. As can be seen from this figure, 48x48 area
covers more than 97% real instances with the best quality generated samples
and we selected the instance size as 48x48 considering the best coverage and
quality. Larger areas would cover all instances, but, in that case, most patches
would have unproportionately large background area compared to the area of
generated instances. In [20], it is reported that image completion works the best
when the original image is double the size of the generated part. Hence, we
selected the patch size as 96x96. The experiments show that generative models
fail when the patch size is larger and generation time increases exponentially.
Also, the boundary artifacts are more pronounced when patch sizes are smaller.

Generator Pluralistic algorithm has been used with its original implementa-
tion1. It uses Residual Blocks as the building block of the system. Each Residual

1 https://github.com/lyndonzheng/Pluralistic-Inpainting
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Fig. 2. Left: Histogram of instance sizes for all instances in the training dataset. Right:
Histogram of confidence scores for 5000 generated samples.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 3. Examples from generated samples with corresponding confidence scores.

Block consists of two convolutional layers and a residual connection with a con-
volutional layer. Encoder has 5 Residual Blocks. Decoder and Discriminator
have 5 and 6 Residual Blocks respectively with an attention layer in the middle.
Training of this network takes around 3 hours for 200 epochs on an NVIDIA
GTX 1080 TI GPU.

The model is able to generate realistic and diverse outputs without mode
collapse. To see the distribution of the generated samples, we generated 5000
samples and evaluated it with the detector. Some examples from generated sam-
ples are shown in Fig. 3 and the histogram of confidence scores can be seen on
the right side of Fig. 2. The equal-ranged histogram bins exhibit no large differ-
ence, indicating a good diversity over generated samples. Also it shows that the
generator does not overfit to detector vulnerabilities.

Detector Tiny YOLOv3 has been adopted as the detector module. It has 13
convolutional layers and the first six layers are followed by max-pooling layers.
The official implementation has been used with the pretrained weights obtained
by training on ImageNet [2] and default parameters for 96x96 resolution. The
pretrained weights provides faster convergence, more stable training and better
generalization. It also prevents overfitting due to single class training. We trained
it for 2000 epochs and for 96x96 patches, the training takes less than 1 hour on
the same GPU. For performance evaluation, it is trained with the default input



8 H. Kumdakcı et al.

Algorithm 1: Workflow of proposed method

input : Generative Network g, Detection Network d
w ← 96 // Determined patch size

Training Stage:
for j ← 1 to Number of instances do

pj ← Extract w × w instance patches
end
Train Generative Network g with extracted instance patches p1...n
Train Detector Network d with extracted instance patches p1...n

Augmentation Stage:
for j ← 1 to Augmentation count do

Select an image to augment
p←Extract patch from random location
Skip to another image if p intersects with another instance
p← Mask the central w/2× w/2 area
p′ ← Generate instance with Generative Network g(p)
o← Evaluate generated instance with Detector Network d(p′)
if o > Acceptance threshold then

Augment the image with the generated instance
end

end

size of the network (416x416) which takes around 7 hours. Workflow of the
proposed method is summarized in Algorithm 1.

5.2 Results

We first conducted an experiment to determine the best parameters for the
networks by augmenting 500 images with 1000 generated instances. The result
of this experiment can be seen in Table 1 for different confidence thresholds
and IoU values. Confidence threshold decides if the generated sample is good
enough to augment. When there is no threshold (= 0.0), the result is the worst as
expected since all generated samples are augmented regardless of their quality. In
this case, the process is also completed in 1000 iterations as there are no rejected
samples. Considering the average of IoU values, the best threshold value is 0.9. At
this threshold, it takes 5902 iterations to generate 1000 accepted instances, i.e. 1
sample is accepted from every ∼5.9 generated samples. It takes significantly long
time and the diversity of the accepted samples is low. The augmented dataset
does not contribute to the robustness and the generalization performance of the
detector and may cause overfitting because of the lack of diversity. The second
best threshold 0.4 provides a good balance between average precision and the
number of iterations. It also has the best precision for the default IoU value
(0.5). Considering the execution time and the diversity of the accepted samples,
we selected 0.4 as the acceptance threshold.

There are two main factors for the evaluation of augmentation performance:
number of training images and number of synthetic car instances. We have tested
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Table 1. Average Precision results for different confidence thresholds and IoU values
where 500 images are augmented with 1000 instances. Augmentation iterations indicate
the number of trials to reach 1000 accepted instances.

Acceptance IoU Augmentation
threshold 0.2 0.5 0.7 Average iterations

0.0 56.20 36.11 7.26 33.19 1000
0.1 55.55 40.67 7.97 34.73 1172
0.2 55.42 39.51 9.23 34.72 1288
0.3 56.23 39.65 8.76 34.88 1423
0.4 56.38 44.16 10.31 36.95 1709
0.5 56.04 44.05 10.08 36.72 1818
0.6 56.16 42.29 10.81 36.42 2189
0.7 57.63 43.41 9.57 36.87 2667
0.8 57.64 43.15 9.90 36.90 3498
0.9 57.08 43.81 10.57 37.15 5902

the system with varying number of training images to observe the performance
of the system. The number of training images has been selected to be 200, 300,
and 400, where they contain 251, 334, and 424 car instances respectively. The
number of training instances are increased by adding 1 or 2 new instances per
image by augmentation, i.e. when there are 400 training images, we added 400
or 800 synthetic object instances (cars) to approximately increase the existing
number of instances by a factor of 2× and 3×. Note that all of the synthetic
object instances are placed on the original images, keeping the number of images
the same. As per above example, there are still 400 images but they have higher
number of object instances than they originally have.

The results shown in Table 2 reveals that the performance of the detector
network improves with the generative augmentation in all cases compared to the
baseline (i.e. when there is no generative augmentation). Average Precision at
IoU> 0.5 performance increases by 17.8%, 25.2% and 16.7% respectively when
there are 200, 300 and 400 images in the dataset and they are augmented with 2
new instances per image. Examples from the augmented dataset can be found in
Fig. 4 where it can be seen that the augmented instances are realistic, diverse and
coherent with the rest of image. Both visual and quantitative results demonstrate
that the proposed method can be used as an augmentation strategy to improve
the performance especially when there are limited number of training images.

5.3 Additional Experiments

We have conducted additional experiments to show that the proposed method
can also be used with different generator models. DeepFill [19] is a generative
inpainting network. The model is a feed-forward, fully convolutional neural net-
work which can process images with multiple holes at arbitrary locations and
with variable sizes. It has 2 autoencoders, the first one is for coarse inpainting
and the following one is for refining the coarse generation. Two discriminators
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Fig. 4. Raw training images (left) are augmented with 2 separate car instances (mid-
dle). Augmented samples are highlighted with red arrows and their zoomed versions
are shown on the right.
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Table 2. Detection performances (AP) with the selected parameters.

Dataset Augmented IoU
Images Instances 0.2 0.5

200 - 49.85 31.43
200 200 52.15 37.65
200 400 51.71 37.04

300 - 53.76 33.25
300 300 55.39 39.76
300 600 56.01 41.62

400 - 55.46 36.14
400 400 56.03 40.24
400 800 56.02 42.18

are used for local and global evaluation. It uses contextual attention and gated
convolutions. The official DeepFill implementation provided with the paper has
been used for experiments. The proposed workflow has been integrated with
DeepFill as generator instead of Pluralistic. Some examples of generated sam-
ples are shown in Fig. 5 and the results can be seen in Table 3 for 0.9 detector
acceptance threshold. Average Precision at IoU > 0.5 increases by 25.1%, 25.7%
and 25.6% respectively when there are 200, 300 and 400 images in the dataset
and they are augmented with 2 new instances per image. It can be seen that the
proposed method results in performance improvement for the detector model
with similar gains to the variant with the Pluralistic, showing that the method
can be used with different generative models.

6 Conclusion

In this paper, we proposed a generative augmentation framework for improving
the performance of object detection in aerial images for small datasets. The pro-
posed method consists of a generator to generate instances at random locations

Table 3. Detection performances (AP) when DeepFill is used as the generator model.

Dataset Augmented
Images Instances DeepFill

200 - 31.43
200 200 35.96
200 400 39.31

300 - 33.25
300 300 38.93
300 600 41.81

400 - 36.14
400 400 38.73
400 800 45.40
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Fig. 5. Examples of generated samples with DeepFill.

and an independent detector to evaluate the feasibility of the generated instances
for augmentation. The proposed method is generic and it can work with different
generator and detector models. While we evaluated the method with Pluralistic
and DeepFill, in the future, use of different generative models can be investi-
gated. The experiments in this paper were based on a single instance class (i.e.
cars). In the future, it can be extended to provide augmentation for multi-class
detection problems by generating instances for multiple classes at once.
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