Skip to main content

A Benchmark for Analyzing Chart Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12668))

Abstract

Charts are a compact method of displaying and comparing data. Automatically extracting data from charts is a key step in understanding the intent behind a chart which could lead to a better understanding of the document itself. To promote the development of automatically decompose and understand these visualizations. The CHART-Infographics organizers holds the Competition on Harvesting Raw Tables from Infographics. In this paper, based on machine learning, image recognition, object detection, keypoint estimation, OCR, and others, we explored and proposed our methods for almost all tasks and achieved relatively good performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  2. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  3. Deng, J., Guo, J., Niannan, X., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR (2019). 6

    Google Scholar 

  4. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. arXiv preprint arXiv:1905.04899 (2019)

  5. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. CoRR, abs/1710.09412 (2017). 7

    Google Scholar 

  6. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  7. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: CVPR (2019)

    Google Scholar 

  8. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In ICLR (2020)

    Google Scholar 

  9. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  10. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

    Article  Google Scholar 

  11. Graves, A., Fernández, S., Gomez, F., et al.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 369–376 (2006)

    Google Scholar 

  12. Xie, S., Girshick, R., Dollár, P., et al.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  13. Sun, K., Xiao, B., Liu, D., et al.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  14. Cao, Y., Xu, J., Lin, S., et al.: Gcnet: non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  15. Poco , J., Heer, J.: Reverse-engineering visualizations: recovering visual encodings from chart images. In: Computer Graphics Forum, vol. 36, no. 3. Wiley Online Library, pp. 353–363 (2017)

    Google Scholar 

  16. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  17. Ke, G., Meng, Q., Finley T., et al.: Lightgbm: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

    Google Scholar 

  18. Zhou, X., Wang, D., Krähenbähl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  19. Yu, F., Wang, D., Shelhamer, E., et al.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ICLR (2014)

    Google Scholar 

  21. Dai, J.: Deformable Convolutional Networks (2017)

    Google Scholar 

  22. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Doll\(^\prime \)ar, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  23. Feng, Z.H., Kittler, J., Awais, M., et al.: Wing loss for robust facial landmark localisation with convolutional neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE (2018)

    Google Scholar 

  24. Rashid, M., Gu, X., Jae Lee, Y.: Interspecies knowledge transfer for facial keypoint detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  25. Surhone, L.M., Tennoe, M.T., Henssonow, S.F., et al.: Histogram of Oriented Gradients. Betascript Publishing 12(4), 1368–1371 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhipeng Luo , Zhiguang Zhang , Ge Li , Lixuan Che , Jianye He or Zhenyu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Z., Zhang, Z., Li, G., Che, L., He, J., Xu, Z. (2021). A Benchmark for Analyzing Chart Images. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12668. Springer, Cham. https://doi.org/10.1007/978-3-030-68793-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68793-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68792-2

  • Online ISBN: 978-3-030-68793-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics