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Abstract. This paper attempts to present an appraisal review of explainable Ar-

tificial Intelligence research, with a focus on building a bridge between image 

processing community and natural language processing (NLP) community. The 

paper highlights the implicit link between the two disciplines as exemplified from 

the emergence of automatic image annotation systems, visual question-answer 

systems. Text-To-Image generation and multimedia analytics. Next, the paper 

identified a set of natural language processing fields where the visual-based ex-

plainability can boost the local NLP task. This includes, sentiment analysis, au-

tomatic text summarization, system argumentation, topical analysis, among oth-

ers, which are highly expected to fuel prominent future research in the field.   
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1 Introduction 

Aided by the advances in computer system computational performances and learning 

system theory, the success of machine learning methods in the last decade has been 

phenomenal in various fields, especially, computer vision and natural language pro-

cessing, which enhanced the prediction and automated decision-making capabilities. 

This has taken machine intelligence and artificial intelligence (AI) to a new frontier that 

witnessed the emergence of new industry standard (e.g., industry 4.0) and human-com-

puter interaction modes where a machine guides medical diagnosis systems, creates 

recommender systems, makes investment decisions and instructs driverless vehicles. 

On the other hand, the state-of-the-art systems in many AI applications use ensembles 

of deep neural networks that are even more difficult to interpret, even for skilled pro-

grammer users. This negatively impacts trust. For instance, during the PwC’s 2017 

Global CEO Survey [1], although it is acknowledged the substantial increase of AI 

market to more than $15 trillion, 67% of the business leaders believe that this will im-

pact negatively stakeholder trust levels in their industry in the next five years. This 

fosters the emergence of explainable AI research that seeks to ensure transparency and 

interpretability of machine learning and AI based algorithms. Indeed, many applica-

tions have seen a huge increase in demand for transparency from the various stakehold-

ers involved at various levels of product pipeline. For instance, in precision-medicine, 

explanation is required to support system diagnosis outcome and clinical investigation; 
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in finance and management, explanation is needed to evaluate various investment sce-

narios with qualitative / quantitative risk evaluations; in autonomous systems, explana-

tion enhances fault inspection and recovery based strategies. In general stakeholders 

are reticent to adopt techniques that are not directly trustworthy, tractable and interpret-

able [2], especially given the increasing scope of ethical AI [3].  

Beyond academia, since 2017, the European Union’s General Data Protection Reg-

ulation (GDPR) introduced the “right to explanation” which states that a user can ask 

for an explanation of an algorithmic decision that was made about them [4]. 

Strictly speaking, the need for AI explainability was recognized well earlier, and was 

an inherent component of many of the first AI diagnostic systems where “IF-Then” 

rules and inference engine were widely employed to explain the actions of the under-

lined expert system for instance. This was implemented in early MYCIN systems [82] 

that formed the basis of many subsequent medical systems; although the exact scope 

and nature of these rules can be debatable. In the literature, the concept of explainability 

is related to transparency, interpretability, trust, fairness and accountability, among oth-

ers [5]. Interpretability, often used as a synonym of explainability as well, is defined by 

Doshi and Kim [6] as "the ability to explain or to present in understandable terms to a 

human".  

According to Sameket al. [7], the need of explainable systems is rooted in four 

points: (a) Verification of the system: Understand the rules governing the decision pro-

cess in order to detect possible biases; (b) Improvement of the system: Understand the 

model and the dataset to compare different models and to avoid failures; (c) Learning 

from the system: "Extract the distilled knowledge from the AI system"; (d) Compliance 

with legislation (particularly with the "right to explanation" set by European Union): 

To find answers to legal questions and to inform people affected by AI decisions. 

Lewis [8] states that "to explain an event is to provide some information about its 

causal history. In an act of explaining, someone who is in possession of some infor-

mation about the causal history of some event –explanatory information – tries to con-

vey it to someone else". Halpern and Pearl [9] define a good explanation as a response 

to a Why question, that "(a) provides information that goes beyond the knowledge of 

the individual asking the question and (b) be such that the individual can see that it 

would, if true, be (or be very likely to be) a cause of".  

Miller [10] extracts four characteristics of explanations: "explanations are contras-

tive" (why this and not that), "explanations are selected in a biased manner (not every-

thing shall be explained)", "probabilities don’t matter" and finally "explanations are 

social". 

Traditionally, transparency has always been at odds with performance where an in-

crease in transparency is often translated into a decrease in system performance because 

of large number of parameters that require tuning [11], see Fig. 1 for exemplification. 

Therefore, a trade-off between the level of transparency and performance required. 

Encompassing the broad scope of the explainability and its multi-disciplinary nature, 

this paper attempts to reconcile explainable AI research on two complementary fields: 

Machine Vision System (MVS) and Natural Language Processing (NLP), trying to sur-

vey the explainable AI in each field and seek complementary aspects in a way to boost 

fruitful XAI research in the two fields. 
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2 Background 

We will adopt in this paper Gunning definition of Explainable Artificial Intelligence 

(XAI) [12]: “XAI will create a suite of machine learning techniques that enables human 

users to understand, appropriately trust, and effectively manage the emerging genera-

tion of artificially intelligent partners”, see Figure 1. 

 

 
         Fig 1.  XAI concept as described in Gunning’s [12] and Performance-interpretability 

trade-off 

 

This definition brings together two concepts; namely, understanding and trust that 

need to be addressed. Such concepts are ultimately linked to several other aspects that 

overlap with cognitive operations of understanding or comprehension tasks. This in-

cludes for instance causality, transferability, informativeness, fairness and confidence 

[13] 

 Regardless of the type of applications involved or the system inputs, the explanation 

differs according to the underlying chosen criterion. Especially, explanation methods 

and techniques for ML interpretability can be classified according to different criteria. 

 

 Pre-Model vs. In-Model vs. Post-Model 

Interpretability methods can be classified depending whether this is applied before 

(pre-model), during (in-model) or after (post-model) the machine-learning model [14]. 

Pre-model interpretability techniques tackle the data itself regardless of the em-

ployed ML model, focusing on the structure of the inputs and associated features with 

their visualization. Intuitive features and sparsity are some properties that help to 

achieve data interpretability. This includes techniques related to descriptive statistics to 

data visualization methods including Principal Component Analysis (PCA) [15], t-SNE 

(t-Distributed Stochastic Neighbor Embedding) [16], and clustering methods, such as 

MMD-critic [17] (Maximum Mean Discrepancy) and k-means [18]. Hence, data visu-

alization is critical for pre-model interpretability.  
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In-model interpretability concerns ML models that have inherent interpretability in 

it, either with or without constraints, being intrinsically interpretable. Post-model inter-

pretability refers to improving interpretability after building a model or model training 

(post hoc). This answers the question: what else can the model tell us? 

 

 Model-Specific vs. Model-Agnostic 

Model-specific interpretation restricts the analysis to specific model classes. For ex-

ample, the interpretation of weights in a linear model is a model-specific interpretation 

[19]. In contrast, model-agnostic methods apply to any ML model after training phase 

(post-hoc), so without having access to model inner workings (i.e., weighting). By de-

fault, all post-hoc methods are model-agnostic since they were applied after the train-

ing. 

In essence, two approaches can be distinguished to explain ML model prediction 

through either a global method that treats the group of predictions of interest as if it was 

the whole dataset or by applying local methods on each individual prediction followed 

by aggregating and joining these individual explanations afterwards [13,20]. 

 

 Local versus global explanation 

According to the scoop of interpretability, one distinguishes global interpretability, 

which concerns comprehending the entire model behavior and local interpretability, 

which rather focuses on a single prediction, or a single feature behavior. For instance, 

Yang et al. [21]’s GIRP (global mode interpretation via recursive partitioning) builds a 

global interpretation tree. Nguyen et al. [22] advocate an activation-maximization based 

approach for global explanation. One of the most popular local interpretability model 

is LIME model [23], which enables approximating ML model in the neighborhood of 

any prediction of interest.  

Other techniques for local explainaibility models include decomposition models 

(omitting some features of the original dataset and attempt to combine the effects of 

various features), Shapely explanations [24], sensitivity maps, saliency maps [26]. 

 

 Type of explanation 

This includes Feature summary (either through visualization or textual input), Model 

internals (model specific), Data point (output data points that make the model interpret-

able), Surrogate intrinsically interpretable model— through approximation of ML 

model either locally or globally with an intrinsically interpretable model.   

 Simulatability  

This refers to comprehending how the model makes decisions, grounded on a holis-

tic view of the data features and individual components (e.g., weights, parameters) in 

order to simulate the overall system. 

 Visualization and interaction 

Popular visualization techniques applied in ML interpretability include partial-de-

pendence plot [27], surrogate models [28, 29], individual conditional expectation [30]. 

Depending on the stage where the visualization techniques is conducted, one can also 

distinguish pre-model, in-model or post-hoc based visualization. Similarly, visualiza-

tion can be performed for local or global like interpretability purpose. 
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                        Table 1. Review of main XAI techniques 
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Decision Trees G Sp All x   [39, 40] 

LIME L A Po x Yes Yes [23, 41] 

Shapely explanations L A Po x Yes Yes [24] 

Rule extraction G / L A Po x Yes Yes [43], [44] 

Decomposition L A Po Ap Yes Yes [32] 

Activation-Maximization G / L A Po x x x [22] 

Surrogate models G / L A Po S Yes x [28-29] 

Individual Conditional expectation L A Po x Yes x [30] 

Model distillation  G A Po x Yes Yes [34] 

Feature importance G / L A Po Ap / S Yes x [45] 

Saliency map L A Po S Yes x [26] 

Sensitivity analysis G / L A Po S Yes x [36] 

Counterfactuals explanations L A Po x Yes x [46] 

Tree View G / L A Po x Yes x [48] 

Rule Set G Sp Po x Yes x [49] 

DecText G / L A Po x x x [50] 

DeepLift G A Po x Yes x [51] 

Layer-Wise Relevance Propagation G / L A Po Ap x x [47] 

Fuzzy Inference System G A Po Ap Yes Yes [52]  

 

 

 Approximation versus sensitivity  

Using the universal approximator property of neural network system, several inter-

pretable approximation models have been proposed to gain insights into the functioning 

of the black-box of the ML model. For instance, rule-based approximation [31] approx-

imates the decision-making process in ML model by utilizing the input and the output 

of the ML only. Decompositional approaches look at extracting rules at the level of 

individual units within ML model [32]. This includes Orthogonal search-based rule ex-

traction proposed in [33] for medicine application. Another approximation method 

cited in the literature is model distillation [34], which acts as a model compression al-

gorithm from deep network to shallow networks. DarkSight [35] combines ideas from 

distillation model and visualization to explain the black-box functioning.  

On the other hand, sensitivity analysis [36] focuses on how black box model is in-

fluenced by its input weight perturbations. Feature importance as in Fisher et al. [37]’s 

Model Class Reliance or SFIMP [38] for permutation based shapely feature importance 

are other sensitivity like analysis for explanation tackling. 
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3 Link between Image and text in explainability 

Intuitively, the link between image and text is either explicit or implicit from several 

standpoints: 

 

Purpose and outcome expectation 

Both image processing and NLP based XAI system do share the same purpose of 

using ML model for classification purpose, and therefore, seeking an explanation of the 

ML outcome using the XAI model. They may seek a global / local, model-specific or 

agnostic, pre-training, in-training or post-training explanation. Although, the classifi-

cation task might be different for NLP and image processing cases. 

 

Universality of many XAI tools 

Tools like LIME framework that enables observing the explainer function on the 

correctly predicted instance can be applied regardless the context of application domain 

(e.g., image or text based exploration). Similar reasoning applies to many visualization 

toolkits, e.g., heat-map that visualizes the extent to which each element contributes to 

the prediction result, saliency map, feature importance map, among others, that are in-

dependent of the application context. 

 

Structure of multimedia and social media posts 

With the advances in Web 2.0 technology that enabled the users to post various types 

of files (text, images, multimedia) and the memory efficiency for handling large scale 

multimedia files, the need for building a capacity to handle equally image and textual 

inputs on the same setting is growing. This motivates the development of unified frame-

works in XAI to handle both types of inputs as well. 

   

Development of automatic annotation services 

Automatic image annotation is the process of automatically creating textual based 

description for the different regions of the image highlighting the content of the images. 

This is especially important to identify sensitive content on online media platforms. 

With the advances in deep learning technology and large-scale image database, several 

tools were made available to scientific community for this task. This includes Google 

Cloud Vision [53], GoogLeNet [54], a deep learning model trained on the ILSVRC 

dataset.  

 

Development of visual question answering services 

Visual Question Answering (VQA) is the task of addressing open-ended questions 

about images; namely, given an image and a natural language question about that im-

age, the task is to provide an accurate natural language answer, see Fig.2 for an exam-

ple. Typically, VQA requires visual and linguistic comprehension, language grounding 

capabilities as well as a common-sense knowledge. A variety of methods have been 

developed [55, 56]. In the latter, the vision component of a typical VQA system extracts 

visual features using a deep convolutional neural network (CNN), then linguistic com-

ponents encode the question into a semantic vector using a recurrent neural network 
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(RNN). An answer is then generated conditioned on the visual features and the question 

vector. 

 

 
 

            Fig. 2. Example of Visual-Question answer systems 

 

Development of Text to Image generation 

Similarly to the previous visual question answering, the problem of explaining tex-

tual content through visual representation is also important for education and learning 

purposes. This has also been investigated by many computer vision scientists. Indeed, 

deep generative models [22] have been proposed to address the task of generating ap-

propriate images from natural description by inferring a semantic layout, which is then 

converted into image using image generator. Methods based on conditional Generative 

Adversarial Network (GAN) have been employed in several text-to-image synthesis 

tasks and competitions [57, 58] and tested on large scale dataset such as birds [59], 

flowers [60], MS-COCO [61]. In this regard, the task of image generation is viewed as 

a problem of translating semantic labels into pixels. Nevertheless, the complexity of the 

reasoning cannot be ignored. Especially, learning a direct mapping from text to image 

is not straightforward and layout generator requires several constraints to enhance its 

practicality due to the vast amount of possibilities of potential image candidates that fit 

a given textual utterance, see, for instance, the example in Fig. 3.    

 

 
                   Fig. 3. Example of Text-to-Image based explanation 
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Fig 4. Architecture for image generator conditioned on the text description and semantic 

layout generator in [79]. 

 

4 Potential benefits to NLP community 

4.1 Word-sense disambiguation  

Word-sense disambiguation aims to assign an appropriate sense to the occurrence of 

a word in a given context. For instance, the meaning of word “chair” in the sentence “I 

have been awarded a chair in Computer Science” is different from that in the sentence 

“I bought a chair in the city market today”, where the sense of the target word “chair” 

is chosen among the set of senses listed in a given dictionary. Typically, standard Lesk’s 

algorithm [62] looks into the number of overlapping words of each sense of the target 

word with the underlined context (sentence), so that the sense that yields the highest 

number of overlap is used to disambiguate the target word. Other variants of Lesk’s 

algorithm as well as supervised and/or semi-supervised algorithms have been proposed 

for word-sense disambiguation tasks [63-64, 80]. 

Making use of visual description raised, for instance, by text-to-image mapping can 

provide insights into word-sense disambiguation task. This assumes that an overall vis-

ual representation is generated for the whole sentence for each sense of the target word, 

and appropriate metrics are constructed to quantify the relevance and commonsense of 

each global visual representation. 

Visualization techniques issues from XAI can also be accommodated for the word-

sense disambiguation feature. For instance, various senses of target words can play the 

role of features and utilize LIME-like-approach to visualize the contributions of the 

various senses, and thereby, disambiguate accordingly. Similarly, the emergence of 

graph based approaches for word sense disambiguation where, in the same spirit as 

Navigli and Lapata [64], the senses are mapped to a graph representation where the 

graph is built using various connectivity algorithms such as PageRank, hyperlink in-

duced topic search, key player problem, various senses can be ranked accordingly, and, 

thereby, handle disambiguation task.  
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4.2 Text Argumentation theory 

With the emergence of Dung’s Argumentation Framework [65], a central approach 

for performing reasoning within argumentation in artificial intelligence and natural lan-

guage processing become tenable. This opens up opportunities for legal text analysis, 

medical science and opinion mining. In this course, arguments are viewed as abstract 

entities, so that the use of argumentation semantics, i.e., criteria for finding acceptable 

sets of arguments, suffices to reason in an argumentative way for a variety of applica-

tion scenarios. Arguments are supposed to support, contradict, and explain statements, 

and they are used to support decision-making. What may constitute an argument is very 

much context dependent. In natural language processing, this can be short utterance 

that fits a given ontology or might be extracted using text summarization like technique 

from a large or a multi-document source file. The possibility to represent both positive 

and negative views using the employed argumentation framework provides opportunity 

to sustain debate and boost interactions. Recently, abstract argumentation has been sug-

gested to explain predictions of neural network system and diaelectrically explainable 

prediction [66]. This ultimately builds bridge with XAI and offers nice opportunities to 

use the abstract argumentation framework as a means to derive explanation and inter-

pretability.   

 

4.3 Sentiment Analysis 

Sentiment analysis refers to the use of NLP, text analysis and computational linguis-

tics techniques to systematically identify, extract and quantify affective states and sub-

jective information, classifying the polarity of a given text at sentence, document or 

multi-document level in order to find out whether the expressed opinion is positive, 

negative or neutral. This has been extensively employed in a range of applications rang-

ing from marketing to customer services to clinical medicine. Key approaches to senti-

ment analysis include knowledge-based techniques, which classify text based on affect 

categories according to presence of affect words such as happy, sad using affective 

lexical database of lexicon dictionary. Furthermore, supervised and machine-learning 

like techniques have also been populated for the same purpose [67]. Several open 

sources are made available for the purpose of sentiment analysis. This includes, Python 

NLTK, TextBlob, Pattern.en, RapidMiner, Stanford’s CoreNLP, SentiStrength, among 

others.  

Through explainability-based reasoning, sentiment analysis can be boosted a step-

further to provide the reason for the sentiment score. For instance, in [68], the authors 

proposed layer-wise relevance propagation model for explaining recurrent network ar-

chitecture for sentiment analysis.  

Zhang et al. [69] proposed an Explicit Factor Model (EFM) based on phrase-level 

sentiment analysis to generate explainable recommendations. 

Interestingly, the presence of contrastive statements from opinionated documents in 

sentiment analysis context opens up the door wide to application of more advanced 

argumentation system, reinforcement learning or Markov-Chain based reasoning in the 
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same spirit as [70] inherited from question-answer system analysis. Similarly, the emer-

gence of multimedia documents in social media platforms provides opportunities to 

mix-up image-analysis & text-analysis based reasoning. For instance, face-emotion 

recognition in videos can provide useful insights into sentiment polarity of the under-

lined textual input. 

4.4 Topical Modelling 

Since the emergence of Latent Dirichlet Allocation (LDA) [71], the task of automatic 

discovery of topics in a textual document has seen a new landmark. In essence, LDA 

introduces sparse Dirichlet prior distributions over document-topic and topic-word dis-

tributions, encoding the intuition that documents cover a small number of topics and 

that topics often use a small number of words. Topic models are a form of unsupervised 

machine learning, in that the topics and mixture parameters are unknown and inferred 

solely from the data where each topic is represented by its N most probable words. 

Humans can judge whether words of a given topic (cluster) form interpretable concept 

(s). Therefore, it is important to seek automatic alternative to measure the interpretabil-

ity of the outputted set of words of each topic. A commonly employed approach is 

based on the co-occurrence analysis, stipulating that words that have high frequency of 

co-occurrence (either within the document under investigation or in a more wider cor-

pus) would indicate high coherence and relatedness, as for words caught and fever for 

instance [72]. The development of word embedding promoted by Google researchers 

has also promoted the so called embedded topic model [73] where each word is mod-

elled as a categorical distribution whose natural parameter is the inner product between 

a word embedding and an embedding of its assigned topic. This has shown to discover 

interpretable topics even with large vocabulary. On the other hand, the development of 

interactive topic modelling [74], where more interaction modes with system output are 

enabled, offers a nice setting to apply a range of visualization tools developed in the 

context of explainable AI for this purpose. 

4.5 Automatic textual summarization 

Automatic text summarization has been a hot topic in NLP focusing on how to sum-

marize the main content of the document while preserving the semantic meaning and 

key messages conveyed by the original document in a way to reduce redundancy and 

maximize the diversity. Typically, two streams have been identified in the literature 

[75]. Extractive summarization where the summary is constituted of a selected sen-

tences from original document through some scoring analysis mechanism that takes 

into account sentence similarity, location, presence of selected keywords, among oth-

ers, and abstractive summarization where the summary sentences may be different from 

that of original documents. Extractive summarization is by far the most investigated 

research stream in automatic summarization. Various graph-based approaches have 

been put forward for extracting relevant sentences. Examples include TextRank [76] 

where the nodes are sentences and the edges the relations (which is context dependent, 
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e.g., semantic similarity beyond certain threshold) between the sentence, and the im-

portance of a given sentence is quantified using PageRank like algorithm. Similarly, 

latent semantic analysis [77-78], which provides a lower dimensional representation of 

words, has also been applied to summarization purpose [81]. 

Strictly speaking, explainable research benefits summarization from both directions. 

First, summarization can be used as a tool to construct and identify arguments that can 

be used to guide the explanation process. Second, the interactive tools, LIME like ap-

proach can also be adapted to boost the sentence weighting scheme, which, in turn im-

pact the outcome of the summarization task.   

 

5 Conclusion 

Explanation methods are a promising approach to leverage hidden knowledge about 

the workings of neural networks and black-box systems, promoting transparency and 

interpretability of the results in the light of the new data protection EU directive on the 

“right of explanation”. This papers attempted to review the state of art of explainability 

methods focusing on intertwine between image processing and natural language pro-

cessing fields in a way to promote fruitful development of new explanation framework. 

Especially, the paper highlights the implicit link between the two research fields 

through, e.g., automatic image annotation, visual question-answer systems, Text-To-

Image generation, multimedia analytics in addition to the overall input-output like sys-

tem analysis. On the other hand, this review has also identified several NLP research 

fields that would benefit from visual explainability based approach. This includes, 

wordsense disambiguation, sentiment analysis, argumentation theory, automatic text 

summarization and topical modelling.  

There are several interesting future research directions to explore further. An inter-

esting direction is semi-supervised learning of the model using a large set of partially 

annotated data. For instance, we can exploit a small number of fully annotated images 

and a large number of partially annotated images (e.g. images with only text descrip-

tions), which allows the developed model to exploit large-scale datasets, such as the 

Google Conceptual Caption dataset. The paper also opens up new research directions 

in multimedia analytics, text summarization and abstract argumentation logic. 
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