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Abstract. The recently emerged field of explainable artificial intelli-
gence (XAI) attempts to shed lights on ’black box’ Machine Learning
(ML) models in understandable terms for human. As several explana-
tion methods are developed alongside different applications for a black
box model, the need for expert-level evaluation in inspecting their effec-
tiveness becomes inevitable. This is significantly important for sensitive
domains such as medical applications where evaluation of experts is es-
sential to better understand how accurate the results of complex ML are
and debug the models if necessary. The aim of this study is to experimen-
tally show how the expert-level evaluation of XAI methods in a medical
application can be utilized and aligned with the actual explanations gen-
erated by the clinician. To this end, we collect annotations from expert
subjects equipped with an eye-tracker while they classify medical images
and devise an approach for comparing the results with those obtained
from XAI methods. We demonstrate the effectiveness of our approach in
several experiments.

Keywords: Explainable AI (XAI), Deep learning, Expert-level expla-
nation, XAI evaluation, Retinal Images, Eye-tracker.

1 Introduction

Machine Learning (ML) models are becoming an essential part of the cur-
rent technology due to their ability to outperform humans in solving partic-
ular tasks such as spam detection [8, 15], healthcare [5], ophthalmology [24] and
autonomous robots [27]. Furthermore, the ML model can be employed to help
experts in supporting their decision in domains such as medical or risk anal-
ysis where actionable solutions may have serious consequences [13, 26]. Recent
advances in ML promise to improve retinal diseases screening substantially and
to improve diagnosis accuracy. Systems developed using these methods have
demonstrated expert-level accuracy in diagnosis for multiple eye diseases in-
cluding diabetic retinopathy [20], age related macular degeneration (AMD) [11],
glaucoma [18] and other anomalies associated with retinal diseases, and to mon-
itor their progression. However, the impact of these models in clinical settings
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is not completely understood. Previous attempts to use ML algorithms in a
computer-assisted diagnosis setting have faced numerous challenges, including
both over reliance (repeating errors made by the model) and under reliance
(ignoring accurate algorithm predictions) [14, 22]. Some of these issues may be
avoided if the computer assisted diagnosis system can explain its black box AI
predictions [3]. Explainable AI (XAI) aims at decoding the decision of AI (Deep
learning/Machine learning) black box to the extent of human-interpretable level.
For instance, if we are to use AI algorithms to classify Diabetic Retinopathy
(DR) levels from retinal fundus images, can the algorithm generate further in-
terpretable justification for its prediction results? Can that justification be pre-
sented visually? Is that visualization aligned closely with expert explanation?
Generally, in sensitive domains such as clinical settings, the domain experts
(clinicians) are skeptical in supporting interpretations generated by AI diagno-
sis tools as a result of high involved risk [6, 26]. But, if instead of developing
various explanation methods for the sensitive domains, the effectiveness of their
evaluation method is studied when expert subjects are involved in loop, then AI
diagnosis tool gain further trust by the domain experts. Therefore, in addition
to improving accuracy of such a tool, the notion of trust, need for transparency
and robustness implies how crucial it is to study the effect of expert evaluation
in the context of XAI methods.

XAI evaluation methods are broadly classified into three categories [9]: They
are, Application-Grounded Evaluation, Human-Grounded Evaluation and Func-
tionally Grounded Evaluation. Application-Grounded Evaluation quantifies how
expert-generated explanation can properly help other humans in specific tasks.
The quality of this evaluation is tested by employing domain experts to ac-
complish certain tasks within the context of an application. For example, an
ophthalmologist should evaluate a diagnosis system in determining the DR level
from retinal fundus images. On the other hand, in the Human-Grounded Eval-
uation evaluations are done using non-expert humans on simplified tasks. For
instance non-experts or users will be shown different explanations and the user
would choose the best one. The authors in [4, 23] evaluated their method using
non-experts, asking to identify which XAI method provides good explanation.
The Functionally-Grounded Evaluation discussed in [8] is basically independent
of human subject. Most of the state-of-art methods falls into this category [1,
21]. For example, the authors in [19] proposed casual metrics insertion and dele-
tion which, are independent of humans to evaluate the faithfulness of the XAI
methods. The intuition behind the deletion and insertion metrics is that the
removal or inserting of the ‘cause’ will make the AI model to change its decision.
However, functionally and human grounded evaluations will not be suitable for
such sensitive medical domains. In practice, all types of evaluation have equal
importance. Choosing a right evaluation method is subject to the explanation
context. For instance, if we seek to generate an explanation that is limited to
experts or specific application such as a medical diagnosis tool, the Application-
grounded evaluation could become more appropriate. This is due to fact that
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for such a unique application careful expert studies are required. Therefore, to
address the specific medical case such as screening the retinal diseases across
retinal fundus images, it is necessary to involve domain experts within this field
to evaluate the explanations of black box models predictions. One way of per-
forming this task is through an interactive collection of the expert feedback on
generating actual explanation using an eye-tracker.

To this end, the main contribution of this paper is to develop a collection
of eye-tracking data from 3 expert subjects across 150 retinal fundus images
for medical application. Concretely, domain clinicians are equipped with an eye-
tracker in an interactive experimental settings to understand how they classify
retinal diseases and assess the retinal image quality. The experts evaluate the
five DR level (No DR, Mild, Moderate, Severe and Proliferative DR) and the
retinal image quality (Good/Bad), respectively. Finally the heatmaps obtained
via the eye-tracker can be compared directly by XAI methods. In this work we
use heatmaps generated together by two XAI state-of-the-art methods namely
SIDU [17], GRAD-CAM [23] using two different evaluation metrics.

The rest of the paper is organized as follows. In Section 2 we describe the eye-
tracking experiments and data collection. Section 3 describes the XAI methods
used for evaluation. Section 4 describes comparison metrics for XAI methods
and Section 5 shows performance evaluation of XAI methods and comparisons.
Finally, Section 6 provides concluding remarks.

2 Eye-tracking Experiments and Data collection

In this section, we discuss how we employ expert subjects to collect annotation
of medical images with an eye-tracker in an interactive experiment setting. The
experts annotation experiments consist of two phases. In the first phase a total
of 100 images are randomly drawn from the Retinal Fundus Image Quality As-
sessment (RFIQA) dataset [16]. Each expert subject (ophthalmologist) is then
required to classify each image (stimuli) as a Good/Bad quality. During each
session of the experiment an ophthalmologist is equipped with an eye-tracker.
In a similar setting, the second phase is conducted to highlight salient regions
corresponding to Diabetic Retinopathy (DR) levels (5 grades) in the eye fundus
Images. In this setup, in order to utilize different dataset for evaluation, 50 im-
ages are selected randomly from the EyePacs dataset [10]. To ensure variance in
our experiment, we asked ophthalmologist experts from medical community to
participate in the experiments. The data collection protocol as well as hardware
setup are discussed in the subsequent section. Note that the collection proce-
dures are identical in both phases.
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2.1 Data collection protocol

In order to record the eye-fixation (spatial coordinate on the screen) of each
expert on the fundus images, we utilized Tobii-X120 eye-tracker [25] as follows:

1. Instructions were given to the expert to sit in front of a screen where the
eye-tracker was attached to the base stand of a monitor and facing a subject.

2. In order for the eye-tracker to capture the eye-fixation properly, the subject
has to sit within 60 cm distance from the screen. This distance was measured
in the IMOTION (Software) [7] where the ultimate data annotation took
place.

3. After a careful calibration of the eye-tracker setup done in the IMOTION,
a block of stimuli displayed on the screen for the expert to evaluate the
good/bad quality of each stimuli (Natural image). Each block of data com-
posed of 25 cells and in each cell, three images were located. The cross-
fixation (+) image at in the beginning (1 sec duration) in order to refresh
the visionary system between each stimuli transition. The second image was
the main stimuli presented to the expert and finally a survey with the task
question (Good/Bad quality or DR level assessment).

4. Once the eye-fixation were collected for the first block (25 stimuli), a break
is given for 10-minutes. This process were repeated for all the stimuli.

Figure 1 illustrates the eye-tracking collection setup with the eye-tracker po-
sitioned below the screen and facing to the experts during the experiment. In
addition, Figure 2 shows samples of recorded eye-fixation and their generated
heatmaps for an expert subject. Note that the heatmaps generation are done
via fitting a Gaussian kernels at each coordinate location of eye-fixation (third
column in the figure).

Fig. 1. Eye-tracking data collection from experts for screening the diabetic retinopathy
and retinal images quality levels.



Title Suppressed Due to Excessive Length 5

(a) Original Image (b) Eyefixations (c) Heatmaps

Fig. 2. Eye-tracking data samples of recorded eye-fixation and their generated
heatmaps collected from experts for screening the diabetic retinopathy and retinal
images quality levels.

3 Explainable AI Methods

To evaluate the visual explanation on the proposed dataset we considered two
most recent visual explanation methods. They are briefly described in sections 3.1
and 3.2.

3.1 SIDU

A new visual explanation method known as SIDU proposed recently in [17] es-
timates the pixel saliency by extracting the last convolutional layer of the deep
CNN model and creating the similarity difference mask which is eventually com-
bined to form a final map for generating the visual explanation of the prediction.
This method generates a heatmap based on two steps: Similarity difference and
Uniqueness. First, a heatmap of the most salient areas of an image is generated
by calculating the similarity difference between sets of feature activation maps.
Secondly, it evaluates feature map uniqueness. This step calculates how different
a specific feature map is from the others. If a feature map is unique, then it
will be labelled as more salient and have a higher weight. The final score that
gives the feature importance is given by the dot product between the two values,
which is then used to calculate the weighted sum of all feature activation image
masks and generate the visual explanation. It was shown via the quantitative
and qualitative (human trust) experiments that for both general and critical
medical data, the SIDU method outperforms state-of-the-art [17]. The ability of
properly localizing the region of interest in the clinical eye fundus images makes
SIDU a well-suited method to provide transparent explanation and audit model
output that is crucial for sensitive domains such as medical diagnosis.
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3.2 GRAD-CAM

Grad-CAM is a method which generates visual explanations via gradient based
localization [23]. It extracts the gradients from the last convolution layer of the
network. The intuition behind this method is that the layer prior to the clas-
sification retains the information of feature relevance while maintaining spatial
relations, and therefore it can generate a heatmap (based on a weighted com-
bination of activation maps dependent on gradient score), which highlights the
features with a positive influence for the specific class that is chosen as the predic-
tion. Given any CNN model, Grad-CAM is an class-discriminative localization
technique which can generate visual explanations without requiring architectural
changes or re-training.

4 Comparison Metrics for XAI methods

To compare heatmaps we choose the two usual metrics used in state-of-the-art
methods for evaluation of saliency detection [2]. The main reason for choosing
more than one evaluation measure is to ensure that the discussion about the
results is as independent as possible from the choice of the metrics. The results
of the different evaluation metrics are not necessarily the same, but when two
metrics show similarities, then it is easy to interpret the robustness of the meth-
ods. These metrics are used do evaluate the performance of the XAI methods
are two different kinds of experiments described in section 5.2.

4.1 Area under ROC Curve (AUC)

The Receiver Operating Characteristics (ROC) measure is one of the most pop-
ular and most widely used method in the community for assessing the degree of
similarity of two saliency maps and it measures the trade-off between true and
false positives at different discrimination threshold values (level sets) [2]. It is a
graphical plot which describes the performance of a binary classifier system as
its discrimination threshold is varied. It is created by plotting the fraction of true
positives out of the total actual positives (TPR = true positive rate) versus the
fraction of false positives out of the total actual negatives (FPR = false positive
rate), at various threshold values. A good prediction method would give a TPR
of 1 at a FPR of 0, yielding a point in the upper left corner of the ROC space that
corresponds to a perfect classification. A completely random guess would give
a point along a diagonal line from the left bottom to the top right corner. The
diagonal divides the ROC space and points above the diagonal represent good
classification results (better than random), points below the line poor results
(worse than random). Thus, a measure of performance derived from the ROC
curve is the AUC (Area Under Curve) which is equal to the probability that a
classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative one (assuming ’positive’ ranks higher than ’negative’). The XAI
visual explanation heatmap is treated as a binary classifier of fixations at various
threshold values (level sets), and an ROC curve is swept out by measuring the
true and false positive rates under each binary classifier (level set).
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(a)Original Image (b) Eye-tracker (c) GRAD-CAM [23] (d) SIDU [17]

Fig. 3. Comparison of XAI methods visual explanation with human visual explanation
(heatmaps). First two rows describes the explanations of good and bad quality of retinal
images. Third, fourth and fifth row describes the explanations of mild, moderate and
sever DR levels. In a real scenario, the ophthalmologists inspect the image quality or
DR levels by looking around exact regions (areas of the heatmaps captured by the
eye-tracker in the 2nd column) of the eye fundus images. The generated heatmaps
in 3rd and 4th columns by the GRAD-CAM and SIDU demonstrate how the visual
explanation methods are closely aligns with human experts.
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4.2 Kullback-Leibler Divergence (KL-DIV)

The Kullback-Leibler Divergence is a metric, which estimates dissimilarity be-
tween two probability density functions [2]. To evaluate the XAI methods, the
distributions are given by the eye-fixations points and the heatmap (visual ex-
planation maps) produced by the model. Let FM be the probability distribution
of the heat map from eye tracking data, and EM be the probability distribution
of the visual explanation map. The distributions are normalized and they are
given by :

EM(x) =
EM(x)∑X

x=1EM(x) + ε
, (1)

FM(x) =
FM(x)∑X

x=1 FM(x) + ε
, (2)

where X is the number of pixels and ε is a regularization constant to avoid
division by zero. The KL-divergence measure is non-linear and varies in the
range of zero to infinity. The lower score indicates that the EM maps have
better approximation of the human expert eye-fixation ground truth.

5 Experimental Evaluation and Results

In this section we perform the experimental evaluation of two state-of-the-art
XAI methods described in section 3 on proposed datset. We conducted two
experiments, for the given trained CNN models. In first experiment, we evaluated
the explanations of retinal fundus image quality predictions and in the second
experiment we evaluated the explanations of Diabetic Retinopathy disease level
classification.

5.1 Training CNN Models

To evaluate the XAI methods, we trained two CNN models on two different
datasets. First, we trained the existing ResNet50 [12] with an additional two
FC layers and softmax layer on the Retinal Fundus Image Quality Assessment
(RFIQA) dataset from the medical domain. The dataset consists of 9,945 images
with two levels of quality, ’Good’ and ’Bad’. The retinal images were collected
from a large number of patients with retinal diseases [16]. The dataset is split
into 80% training, 10% validation and 10% testing. Data augmentation is per-
formed on the training samples. We apply image transformations such as random
rotation, width shift, height shift, zooming, horizontal flipping and scaling to the
RFIQA training subset to enlarge the dataset. The CNN model is trained over
120 epochs with batch size of 3. We use categorical cross entropy as a loss func-
tion and SGD as optimizer with learning rate 10−4 and momentum as 0.9. The
CNN model is initialized with imagenet weights and trained the whole model on
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the RFIQA dataset. The CNN model achieves 94% accuaracy. The explanation
methods uses the trained model for explaining the prediction of the RFIQA test
subset with 1028 images whereas the second CNN model is trained for classify-
ing the diabetic retinopathy (DR) disease levels. We used existing ResNet50 [12]
model similar to first one. The CNN model is trained on the EyePacs dataset [10].
we initialized with ImageNet pre-trained weights and trained the whole model
parameters on EyePacs dataset. The CNN model achieves 85% on test dataset
which 10k images of five levels of DR. Both model have ’human like’ performance
and hence XAI generated heatmaps can be expected to behave similar to those
of human expert. The frameworks are implemented on Tensorflow keras with
GPU memory of 11GB, Nvidia, RTX 2080Ti.

5.2 Results and Discussion

In the first experiment, we use the RFIQA images eye-tracking data record-
ings described in section 2 to generate and evaluate the explanation by the XAI
algorithms. To this end, we first generate ground truth heatmaps by apply-
ing Gaussian distributions on human expert eye-fixations. These heatmaps are
then used to compare with the XAI heatmaps. Table 1 summarizes the results
obtained by two different XAI methods on our proposed RFIQA eye-tracking
data using AUC and KL-DIV evaluation measures as described in section 4.1
and 4.2 respectively. For the AUC measure, we observe that, GRAD-CAM [23]
shows slightly better performances compared to SIDU [17] for both the experts,
whereas for the KL-DIV measure both methods performed equally well for ex-
pert 1 and for expert 2 GRAD-CAM [23] has shown better performance.

In the second experiment we evaluated XAI methods using DR disease levels
eye-tracking data recording described in section 2. We follow a similar proce-
dure for generating the ground truth heatmaps. We collected the eye-fixations
from three experts and compared the XAI methods, explanations with the three
experts individually. Table 2 summarizes the results obtained by two different
XAI methods on our proposed eye-tracking data using two evaluation measures.
We observe that SIDU [17] performs better than GRAD-CAM [23] for both
AUC and KL-DIV measures for all the experts. Figure 3 shows visual explan-
tions comparisons of XAI methods with human visual explanation of Good, Bad,
quality grades and DR disease levels such as No DR, Mild, Moderate, Severe,
Proliferative DR levels predictions. From the figure, we can clearly observe that
the visual explanations from the XAI methods are closely aligns with human
experts. In practice, the doctors verify the visibility of the optical disc and mac-
ular regions in a good quality image, corresponding to the highlighted regions
in the heatmap 1st row. Similarly, the bad quality image, 2nd row is due to the
shadow just above the center of the image, i.e., exactly the region highlighted by
the XAI methods. For the DR levels the practitioners look in the lesions such as
Microaneurysms ( tiny red lesions), Haemorrhages (Bright red lesions), Exudates
(Yellow spots) near the optical disk, the macula and the region surrounding to
macula and this can be observed in the heatmaps of human experts and XAI
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methods 3rd, 4throw and 5throw with mild, moderate and Severe DR levels.
Therefore from the above two experiments we can conclude that the evaluation
of XAI methods in medical domain requires human experts for gaining greater
trust and transparency.

Table 1. Evaluation of XAI methods on proposed eye-tracking dataset using AUC and
KL-DIV on retinal images quality levels dataset.

XAI
methods

AUC measure ↑ KL-DIV measure↓
Expert1 Expert 2 Expert3 Expert1 Expert2 Expert3

SIDU [17] 0.6545 0.5899 0.6442 11.7712 14.1240 12.2316

GRAD-CAM [23] 0.6605 0.6125 0.6575 11.6087 13.3929 11.7866

Table 2. Evaluation of XAI methods on proposed eye-tracking using AUC and KL-DIV
on DR disease levels dataset.

XAI
methods

AUC measure ↑ KL-DIV measure↓
Expert1 Expert 2 Expert3 Expert1 Expert2 Expert3

SIDU [17] 0.6089 0.5805 0.5834 12.9420 14.14708 13.6627

GRAD-CAM [23] 0.5734 0.5454 0.5504 14.0974 15.2675 14.6741

6 Concluding Remarks

In this paper we proposed a framework for evaluating explainable AI (XAI)
methods using an eye-tracker in the medical domain particularly for the screening
of retinal diseases, DR and quality assessment for retinal images. It is designed
specifically for evaluating XAI methods in the medical domain. To the best
of our knowledge, the proposed eye-tracker dataset is the first of its kind for
evaluating the visual explanations in the medical domain by involving human
experts (ophthalmologists). Experimental results using two different datasets
with different characteristics show the importance of involving human experts
in evaluating XAI methods.
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