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Abstract. We propose a novel unsupervised approach based on a two-
stage object-centric adversarial framework that only needs object regions
for detecting frame-level local anomalies in videos. The first stage con-
sists in learning the correspondence between the current appearance and
past gradient images of objects in scenes deemed normal, allowing us to
either generate the past gradient from current appearance or the reverse.
The second stage extracts the partial reconstruction errors between real
and generated images (appearance and past gradient) with normal ob-
ject behaviour, and trains a discriminator in an adversarial fashion. In
inference mode, we employ the trained image generators with the adver-
sarially learned binary classifier for outputting region-level anomaly de-
tection scores. We tested our method on four public benchmarks, UMN,
UCSD, Avenue and ShanghaiTech and our proposed object-centric ad-
versarial approach yields competitive or even superior results compared
to state-of-the-art methods.

Keywords: Video anomaly detection · Object-based · Adversarial learn-
ing.

1 Introduction

Detecting anomalies in surveillance videos allows designing safer living environ-
ments by identifying potential risks, unsafe interactions between users or con-
fusing urban signage. Similarly to previous work [11,18,25], we define abnormal
event detection as the identification of spatio-temporal image regions in a video
that deviate from the learned normal ones. We focus on detecting abnormal
events on a per individual/object basis, also known as local anomalies. They are
independent from other surrounding spatio-temporal events. Thus, we only need
to consider the image regions corresponding to objects possessing the abnormal
behaviour. We want to detect those events with just a small number of frames.

Recently, a solution based on a Convolutional Auto-Encoder (CAE) was pro-
posed in [4] for detecting local anomalies, which takes less memory for building
the networks and for which the training is significantly faster compared to holistic
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Fig. 1: Generated images from our proposed method. GS generates the past
spatial gradient image s from the appearance a of a region in a frame t and GA
does the reverse. For an abnormal region (in red), the images are not generated
correctly compared to the normal regions (in blue).

methods that consider the whole image, not just objects’ bounding boxes. This
is seen as an object-centric approach, due to the fact that it ignores background
information and learns to classify local anomalies solely based on local informa-
tion of the objects. However, it relies on K-means clustering combined with a
one-versus-rest SVM classification scheme, that requires a predefined knowledge
on the number of clusters which might vary depending on the scenario. More-
over, the CAE models are trained separately and are, therefore, unable to learn
the relation between different local information like appearance and gradient.

To tackle these issues, we propose a new method for detecting local anoma-
lies in videos that uses a novel unsupervised two-staged object-centric adversar-
ial framework. The first stage of our method learns the normal local gradient-
appearance correspondences and the second stage learns to classify events in an
unsupervised manner. The local gradient-appearance correspondence is learned
by relating the gradients of a previous frame with the visual appearance of an
object in the current frame.

Our method first uses a pretrained object detector to extract all the regions of
interest in a frame, and then, extracts the spatial gradients in the previous frame
at the location of the detected objects in the current frame. After that, we train
the components of our generative framework: 1) two cross-domain generators,
where one learns to predict the past gradients by taking the appearance and the
other one learns the reverse, and 2) two discriminators that discriminate between
the real and generated appearance and real and generated gradients, respectively.
This first stage results in the training of two cross-domain transformers. For the
second stage, we apply the cross-domain transformers for generating gradient and
appearance images from the normal real appearance and gradient images. Then,
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we compute the partial mean-squared reconstruction errors (PMSRE) between
real and the generated images and train a generative adversarial network (GAN)
with a generator, which generates fake PMSRE, and a discriminator, a binary
classifier, that determines whether they are real or not.

During inference, when an anomaly occurs as illustrated in the figure 1, one
or both of the transformers (GA and GS) will not be able to correctly predict
the past spatial gradients or/and the current appearance, thus, indicating the
likelihood of that region of being abnormal. We tested our proposed approach on
four public datasets with local anomalies: UMN [15], UCSD [14], Avenue [11] and
ShanghaiTech [12]. The results show that our method is better or competitive
with the state-of-the-art on all datasets.

Our contributions are the following: 1) We propose a novel two-stage object-
centric adversarial approaches for local anomaly detection in videos, 2) we em-
ploy an unsupervised cross-domain GAN trained using pixel-level regions of the
objects having normal behaviour in videos and 3) we propose an adversarially-
learned binary classifier that classifies normal from abnormal PMSRE.

2 Related Work

Before the success of deep learning methods, most of the authors were relying on
manually predefined feature extraction. For example, in [16], the authors extract
histograms of oriented tracklets from a few consecutive frames. Features derived
from optical flow are also used for detecting abnormal events through the use
of a covariance matrix [25]. The success of these methods to detect abnormal
events depends on the quality of the extracted hand-crafted features, and thus,
the quality of the detection is heavily influenced by them. Besides, considering
engineered features instead of pixel data to learn normal/abnomal classification
implies loss of valuable spatial and temporal information.

Instead of analyzing image regions, another approach is to classify as normal
or abnormal foreground object trajectories. For instance, in [7], the authors com-
pute trajectories for normal events, apply sparse reconstruction analysis on them
to learn the normal patterns, and detect any abnormal trajectories as outliers.
For abnormal trajectory detection of road users, an unsupervised approach via a
deep Auto-Encoder (DAE) was proposed in [20] for learning the normal trajec-
tories and detecting the abnormal ones as outliers. In a following work [19], the
use of a GAN in a discriminative manner was applied for classifying abnormal
trajectory reconstruction errors produced by a pretrained DAE. This inspired
us for applying an adversarial approach for detecting abnormal events in videos.
Despite the fact that the problem becomes simpler when converting events into
trajectories, this approach suffers from the fundamental issue of losing appear-
ance information and relying on an external mechanism for obtaining trajectory
data. Normal trajectories are also scene specific.

The authors of [18] proposed to use a CAE to learn the normal appearance
and motion features extracted using a Canny edge detector and optical flow.
Once the CAE is fully trained, it is then used on every frame for construct-
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ing the regularization of reconstruction errors (RRE), which will later be used
for detecting anomalies. Nevertheless, this approach trained solely on the nor-
mal samples might start to generalize over the abnormal ones, thus affecting
the classification performance. Recently, an object-centric approach using CAE
models was proposed in [4] in which the generated latent appearance and motion
features (motion features are actually computed from past and future gradient
images) of objects are used for classifying local anomalies. However, the CAE
models, one for appearance and two for motion, are trained separately and sev-
eral SVM classifiers are required for doing the anomaly classification. We took
inspiration from this work by applying the object-centric input images to the
framework of a cross-domain GAN proposed in [6], which allows us to better
learn the gradient and appearance correspondence by jointly training two image
generators in an end-to-end manner. We also improve classification using adver-
sarial learning of reconstruction errors following [19]. Moreover, we only relies on
the previous frame for gradient, thus making it applicable in real-time scenarios.

To solve the aforementioned issues with CAEs, some authors proposed to use
GANs for training a discriminator in an unsupervised fashion by using the gen-
erator to generate abnormal data during the learning process [22]. The trained
discriminator can then later be used as a binary classifier for detecting anomalies.
However, these methods cannot handle the spatio-temporal aspect in the video,
and thus, perform poorly when the appearance change over time. To tackle this
problem, authors in [10,17] proposed to use a GAN that can learn to produce
the future frame of the scene with normal events, and, when an abnormal event
occurs in a scene, the generator will not produce the correct subsequent frame,
thus allowing the detection of abnormal events. The downside of these methods
is that they rely on the optical flow methods and cannot be generalized across
different scenes.

3 Proposed Method

In order to alleviate the shortcomings of existing methods, our proposed ap-
proach incorporates an object-centric mechanism into an adversarially-learned
prediction-based method, to learn to distinguish local anomalies based on the
appearance/gradient of regions of object of interest, thus ignoring background
information.

Our method first detects all the objects in a video frame by using a mul-
ticlass object detector, and extracts the spatial gradient image of the corre-
sponding regions of interest. Then, we train a GAN, called GARDiN (Gradient-
Appearance Relation Discovery Network) inspired from DiscoGAN [6] to dis-
cover the object-centric cross-domain relations between past spatial gradients
(that capture shapes and patterns) and the current visual appearance using the
extracted data. This allows GARDiN to learn how the shape/appearance of a
region evolves over time. This jointly trains two cross-domain object-centric gen-
erators that each transforms an image from one domain (appearance/gradient)
into another domain (gradient/appearance), and two discriminators that each
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learns to discriminate a specific real domain against the generated fake one. After
that, we construct normal partial mean squared reconstruction errors (PMSRE)
produced by comparing the real appearance and gradient images of the regions
and the generated ones. Inspired by [19], we then use these PMSRE for training
a discriminator that acts as a binary reconstruction error classifier through a
typical GAN-based approach in which the generator learns to generate realistic
PMSRE, while the discriminator discriminates them from the real ones.

Once fully trained, we apply GARDiN to obtain PMSRE and directly use our
adversarially-learned PMSRE classifier to discover whether the object-centric
region is normal or not. We named our anomaly detection system GARDiN
video anomaly detector (GARDiN-VAD).

3.1 Object Detection and Gradient Extraction

In order to detect multiple objects in a video frame, we use the pretrained
multiclass object detector, CenterNet [28], which is currently one of the best
and readily available in machine learning frameworks. This detector is both
reasonably accurate and fast enough for an anomaly detection system. Also,
since it does not rely on implicit anchors, it can detect well small objects, which
is crucial for detecting anomalies in a crowded scene. Note that, to obtain the
appearance images, we transform all the detected objects into grayscale and
resize them into 64× 64× 1.

In addition to detecting the spatial locations of objects frame by frame in a
given video, we also compute an object-centric past spatial gradient image for
each object as in [4], which is defined as the 2D spatial gradient produced by
the Sobel operator on the region in the previous frame using the bounding box
coordinates of the object in the current frame. This past spatial gradient image
enables our adversarial framework to implicitly learn the change of object shape
and position as the object moves. Moreover, compared to an optical flow image,
it is significantly less expensive to compute and generalizes well, as it ignores the
specific motion direction, thus facilitating the unsupervised learning of normal
motion patterns. Note that, because the change caused by motion is small in two
consecutive frames in a 25 fps rate video, we use a temporal spacing of T frames
when computing the past spatial gradient image (T = 3 in our experiments).

3.2 Gradient-Appearance Relation Discovery Network (GARDiN)

Inspired by cross-domain GAN [6] that discover the relationship between images
across different domains, we propose to apply this idea for learning the corre-
spondence between the appearance and the gradient of an object moving in a
video. Thus, we define appearance and gradient as two distinct domains in which
the goal is to discover the relationship between images belonging to each of these
domains.



6 Roy et al.

at st−T

GS

GA

DA DS

GS

LA
L
S

LA
S

L
SA

LDSLDA

GA

Fig. 2: Adversarial framework of GARDiN. During the training process, for a
frame t, GS and GA learn to generate images st−T and at respectively from
spatial gradient domain S and from appearance domain A by using the recon-
struction losses LA, LS , LAS and LSA, while the appearance discriminator DA

and spatial gradient discriminator DS classify the real against the generated
ones with LDA

and LDS
.

Formulation As illustrated in figure 2, our GAN is composed of two generators
that either transform an appearance image into a gradient image or a gradient
image into an appearance image, and two discriminators that each discriminates
the real appearance/gradient image against the transformed one. More specif-
ically, considering the two domains, appearance A and spatial gradient S, the
generator GS maps the images from A to S and generator GA from S to A. For
instance, in a video frame t, given an input appearance image at from domain A
of an object, GS (at) should produce an image resembling the real corresponding
spatial gradient image st−T from domain S. In addition to that, GA (GS (at))
should reproduce the original input image at. The same applies for an input
spatial gradient image st−T from domain S. Therefore, for a given video frame
t, we can formulate four reconstruction losses:

LAS = d
(
GS
(
at
)
, st−T

)
LSA = d

(
GA

(
st−T

)
, at
)

LA = d
(
GA

(
GS
(
at
))
, at
)

LS = d
(
GS
(
GA

(
st−T

))
, st−T

)
,

(1)

where d() is a custom distance function, LAS and LSA deal with the transfor-
mation of an image from A → S and from S → A respectively, LA and LS
apply to the reconstruction of the given input image using the two generators
in sequence. Empirically, we found that combining different distance measures
such as L1, L2 and SSIM [26] yields the best performance, as demonstrated in
our ablation study. Thus, the distance d(I1, I2) between two images I1 and I2 is
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given by the following equation:

d (I1, I2) = dL1 (I1, I2) + dL2 (I1, I2) + dss (I1, I2) (2)

where

dL1 (I1, I2) =
1

n

∑
x,y

|I1(x, y)− I2(x, y)|

dL2 (I1, I2) =
1

n

√∑
x,y

(I1(x, y)− I2(x, y))
2

dss (I1, I2) =
1

2
(1− SSIM (I1, I2)) ,

(3)

where n is the number of pixels in the images.
The total loss, the Gradient-Appearance Consistency loss LGAC, is given by

LGAC = LAS +LSA +LA +LS . (4)

This loss ensures the transformation consistency of images between the two
domains A and S by the generators.

Now, for making our framework adversarial, we consider two discriminators
DA and DS that distinguish between the transformed images and the real images
from domains A and S respectively. We use the following adversarial losses:

LDS
= Est−T∼ps

[
logDS

(
st−T

)]
+ Eat∼pa [log (1−DS (GS (at)))]

LDA
= Eat∼pa [logDA (at)] + Est−T∼ps

[
log
(
1−DA

(
GA

(
st−T

)))]
,

(5)

in which pa and ps describe the distributions of the input images at and st−T

respectively. In theory, GS and GA try to generate realistic spatial gradient
and appearance images by minimizing LDS

and LDA
accordingly. Conversely,

DS and DA try to discriminate the real images against the generated ones by
maximizing LDS

and LDA
.

Consequently, by incorporating the reconstruction and adversarial losses, we
obtain the full objective of GARDiN as follows:

LGARDiN = LGAC +LDS
+LDA

. (6)

This enables the model to predict the past spatial gradient of an object by looking
at the current appearance and predict the current appearance by looking at the
past gradient. Therefore, we hypothesize that, when an anomaly occurs, one
or both of the generators will make an incorrect prediction, thus allowing its
detection.

Architecture The network architecture of our GAN is based on DiscoGAN [6].
Both generators (GS and GA) share the same U-net like architecture using skip-
connections. Considering the input image size (64 × 64 × 1) for each generator
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of GARDiN, the encoder part is composed of 6 2-strided convolutional layers
followed by the decoder made out of 6 2-strided transpose convolutional lay-
ers, outputting an image of size (64 × 64 × 1) using Sigmoid activation. The
numbers of filters in the encoder are {32, 64, 128, 256, 256, 256} and in the de-
coder {256, 256, 128, 64, 32, 1}. Similarly, both discriminators (DS and DA) fol-
low the PatchGAN architecture [5] with 4 2-strided convolutional layers using
{32, 64, 128, 256} filters and a 1-strided convolutional output layer, which pro-
duces an output of size (4 × 4 × 1) allowing to classify by overlapping patches.
During the elaboration of our method, we noticed that using 4× 4 filters for all
convolutional layers gives the best results. To tackle the issue of vanishing gradi-
ents, we incorporate leaky ReLU after each convolutional layer, except the last
one, followed by instance normalization [24] between each convolutional layer.

3.3 Partial Mean Squared Reconstruction Errors (PMSRE)

Once we have trained our generators GS and GA for predicting object-centric
spatial gradient and appearance images, the next step is to compute the recon-
struction errors that will be used for classification in order to predict anoma-
lies. As previously illustrated in figure 1, we noticed that, most of the time,
an anomaly occurs locally in one or more spatial locations in the reconstructed
gradient and/or appearance images. Thus, we found it more appropriate to per-
form the classification on partial reconstruction errors instead of on a global
one. Empirically, in both the gradient and appearance domains, we observed
that dividing the pixel-level reconstruction errors into 4 blocks rendered the
best performance when training our adversarial binary classifier. With an input
appearance image a of an object and the predicted appearance image a∗, we get
the following partial mean squared error for an image block Bk:

ek(a, a∗) =
1

h · w

h∑
i=1

w∑
j=1

(
aij − a∗ij

)2
(7)

where h = w = 32 is the size of a block. By following the same logic for the input
spatial gradient image s and the predicted one s∗, we obtain the one dimensional
partial reconstruction errors vector e:

e = [e1(a, a∗), e1(s, s∗), e2(a, a∗), e2(s, s∗), e3(a, a∗), e3(s, s∗), e4(a, a∗), e4(s, s∗)] . (8)

3.4 Adversarial classification of the PMSRE

Inspired by ALREC [19], we incorporate the idea of adversarially training a bi-
nary discriminator that learns to discriminate real e against fake ones generated
by a generator which, in turn, learns to generate realistic e. In the inference
mode, only the discriminator is used for predicting whether e of an object is
normal or not.
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Formulation The main idea behind the use of a GAN for detecting abnormal e
is to learn the distribution of normal e. The generator G, using an input Gaussian
noise z, should be able to generate realistic normal e at the end of the training. In
the learning process, e will become more and more realistic, and we assume that
this should allow the discriminator D to learn the boundary between normal and
abnormal e. Therefore, the discriminator D should learn to classify the close to
be real generated samples as fake while ensuring the detection of the real ones
as real. We use the Focal Loss, FL , for imposing more weight on harder samples
than on the easier ones [8]:

FL(p) = −α (1− p)γ log(p), (9)

where p is the prediction probability depending on the ground-truth label, α
affects the offset for class imbalance and γ helps to adjust the level of focus on
hard samples. Using this, the full objective function for training our adversarial
binary classifier using normal e examples is the following:

LC = Ee∼pe [FL (D (e))] + Ez∼pz [FL (1−D (G (z)))] . (10)

We use label 0 for identifying fake/generated e and 1 for the real/normal
e. In inference mode, we directly apply the trained D to produce region-level
abnormality score se = 1 − D(e), which is a prediction probability that varies
between 0 (normal) and 1 (abnormal). Following the same experimental protocol
as [10], we normalize se scores between 0 and 1 for each sequence independently.

Architecture We are using an architecture based on a fully-connected neural
network, which enables the learning of complex pattern of e. The generator G,
taking an input noise of size 16, is composed of 5 dense hidden layers with
{64, 128, 128, 256, 256} units respectively. The discriminator D is made out of 5
dense hidden layers with respective {256, 256, 128, 128, 64} units. In addition, to
avoid overfitting, leaky ReLU and Dropout are used between each hidden layer,
and the output layer follows a Sigmoid activation.

3.5 Abnormal Events Detection

The last step of our proposed method is to convert the region-level anomaly
detection to the frame-level, to find the subsequences of a video, if any, that
contain an anomaly. To obtain the frame-level anomaly score sf , we simply
take the region-level anomaly score se which produces the maximum value. As
in [4], we also use a Gaussian filtering technique with a standard deviation of
10 for smoothing the frame-level scores temporally throughout the sequence. A
threshold can then be used to determine whether the frames are normal or not.

4 Experiments

4.1 Datasets and evaluation procedure

We conducted experiments on four publicly available datasets with varying def-
inition and complexity of anomalies: UMN [15], UCSD Pedestrian [14], CUHK
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Avenue [11] and ShanghaiTech [12]. For all datasets, the training videos are
assumed to be normal. UMN features 11 videos with 3 different scenes where
anormal events are people running. We used the normal portion of 6 videos, 2
videos per scene, as training set and all the videos for the testing set as done by
previous works. UCSD Pedestrin comprises two datasets: Ped1 and Ped2. Ped1
is composed of 34 training and 36 testing videos, with 40 abnormal events. Ped2
is made of 16 training and 12 testing videos, with 12 anomalies. Anomalies are
the presence of skateboarders, cyclist, wheelchairs and vehicles in the pedestrian
walkway areas. CUHK Avenue is composed of 16 training and 21 testing videos,
where the test set contains 47 anomalies involving person running, loitering and
leaving/throwing objects. Finally, ShanghaiTech is a highly challenging anomaly
dataset with 13 different scenes involving diverse viewpoints and illuminations,
resulting in a total of 330 training and 107 testing videos. Globally, there are 130
abnormal events in the test set with numerous types of anomalies, like people
fighting, a person jumping, robbing, cyclists, etc.

To evaluate our method, we adopted the frame-level Area Under Curve
(AUC) metric. To do so, we apply the Receiver Operation Characteristic (ROC)
on the frame-level anomaly ground-truth labels with respect to our predicted
frame-level anomaly scores sf by progressively modifying the classification thresh-
old. As in [10], to compute the global dataset AUC score, we first got the frame-
level scores per video by applying our trained method, then we combined all the
scores temporally and, lastly, we computed the AUC on the concatenated scores.

4.2 Experimental Setup

Our method is implemented using Python 3 and Keras. For detecting multiple
objects in the frames using CenterNet [28], we used the model provided for
the Hourglass-104 backbone with the pretrained weights from the MS-COCO
dataset [9], providing 81 different object classes. To reduce missing detections,
we allow all classes with a confidence of at least 0.3.

We train GARDiN for 200 epochs of randomly shuffled mini-batches of size
64 using a learning rate starting from 10−2 and following a polynomial decay
of power 2 every 25 epochs. To train the anomaly classifier, we follow the same
training mechanism, but with a starting learning rate of 10−4 decaying every
10 epochs for a maximum of 50 epochs of randomly shuffled mini-batches of
256 samples. For the classifier’s Focal Loss, we have empirically chosen α = 0.1
and γ = 10. To train both frameworks, we use Adam optimizer with β1 = 0.5
and β2 = 0.999. To stabilize the adversarial training process for both GANs, we
slightly smoothed the labels when training the discriminators with real samples.

4.3 Results

Table 1 presents our frame-level AUC anomaly detection results on the four
datasets. We also included in the table some recent state-of-the-art methods
evaluated on at least one of the considered datasets. Figure 3 illustrates anomaly
detections on Ped1, Ped2, Avenue and ShanghaiTech using our proposed method.
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Table 1: Frame-level abnormal event detection AUC results (in %) on four
dataset. * Means that results were recalculated to follow the procedure in [10].
Method UMN Ped1 Ped2 Avenue ST

Conv-AE [3] - 81.0 90.0 70.2 60.9
Discriminative [1] 91.0 - - 78.3 -
ConvLSTM-AE [13] - 75.5 88.1 77.0 -
Deep-Cascade [21] 99.6 - - - -
STAE-optflow [27] - 87.1 88.6 80.9 -
Deep Conv-AEs [18] - 56.9 84.7 77.2 -
Future frame pred [10] - 83.1 95.4 84.9 72.8
OC Conv-AEs* [4,2] 99.6 - - 86.6 78.6
M-A Correspond [17] - - 96.2 86.9 -

GARDiN-VAD (ours) 99.7 85.2 97.5 87.3 81.1
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Fig. 3: Qualitative anomaly detection results on test videos from each dataset.
Red curves show the frame-level anomaly score and the areas in cyan represent
the ground-truth abnormal frames. Black and red arrows point to the ground-
truth bounding boxes and the detected regions by GARDiN-VAD respectively.
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UMN For the UMN dataset, our approach significantly outperforms [1] and
is on par with [21,4] by achieving a near perfect result. More specifically, our
proposed GARDiN-VAD can accurately detect the people escape instances on
all three different scenarios, while discarding the background information. This
illustrates the applicability of our object-centric adversarial approach for detect-
ing real-world crowd panic events.

UCSD Pedestrian On Ped1, we note a notable improvement in the AUC score
using GARDiN-VAD compared to some anomaly detection counterparts [13,18]
and almost on par results with [14,3,10]. However, we notice that the spatio-
temporal-based method of [27] largely surpasses GARDiN-VAD. In fact, the
spatio-temporal auto-encoder in [27] was only evaluated on videos having a single
scene and, unlike our method, they are not applicable to datasets which contains
various scenes. Even though the anomaly definition on Ped1 is simple, the fact
that the image resolution is only 158 × 238 makes the input data for GARDiN
significantly more noisy compared to other datasets. Moreover, as illustrated in
figure 3(a), there might be heavy occlusions in some portions of the crowded
scene, thus making it difficult for our detector to extract a well defined region,
especially for the far top-right objects. Nevertheless, on Ped2, we obtain the best
performance, outperforming all state-of-the-art methods, even the recent ones
[10,17]. In fact, as shown in figure 3(b), there are noticeably less occlusions than
Ped1 and the foreground objects are visually clearer. Despite having a better
resolution, Ped2 is easier than Ped1 because of the lateral viewpoint.

CUHK Avenue For the Avenue dataset, our method competes with [10,4,17]
and significantly outperforms others, which shows that object-centric-based meth-
ods can be more robust to occlusions and camera jittering. However, it cannot
detect anomalies involving the interaction between multiple objects in the scene,
as illustrated by a person throwing a bag which goes outside the video frame in
figure 3(c), which is expected because this is not a local anomaly. Nevertheless,
the frame-level AUC results show that object-centric approaches perform overall
well for detecting local anomalies on a challenging side-view scenario.

ShanghaiTech Lastly, on the most challenging dataset ShanghaiTech, our
method noticeably outperforms the method of [3] by an absolute gain of around
20% and it obtains results better than [10]. It also performs slightly better than
the other object-centric method [4,2] while relying only on the past and present
observations. Although sometimes, depending on the camera angle, cyclists can
have lower anomaly scores than pedestrians as shown in figure 3(d), methods
relying only on the regions of the objects will be able to detect local anomalies
across different scenes, mainly due to the fact that they exclude background
information and are less context-dependent.
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Table 2: Ablation study AUC results (in %) on Ped2.
(a) GARDiN losses using One-Class SVM with L2 distance metric.

LAM X X X X
LMA — X X X
LA — — X X
LM — — — X

AUC 79.3 81.2 82.7 85.2

(b) Distance metrics in GARDiN losses using One-Class SVM.

dL1 X X — — X X X
dL2 — X — — X X X
dss — — X — X — X
dnr — — — X — X X

AUC 85.2 87.1 84.5 83.6 91.3 88.7 89.8

(c) Classification methods of reconstruction errors.

Method L1 L2 SSIM PMSRE

OC-SVM [23] 88.9 91.3 92.1 93.4
One-vs-rest-SVMs [4] 89.4 92.1 92.8 94.3
DAE [20] — — — 95.2
ALREC [19] — — — 95.9
ALREC-FL (ours) — — — 97.5

Table 3: GARDiN AUC results (in %) on UCSD (Ped1 and Ped2), Avenue and
ShanghaiTech using one of two different detectors.

Detector Ped1 Ped2 Avenue ShanghaiTech

RetinaNet [8] 83.6 97.4 83.1 80.3
CenterNet [28] 85.2 97.5 87.3 81.1

4.4 Ablation Study

We chose Ped2 for conducting our ablation study, presented in table 2, since
we can train our models faster on it and the anomaly definition generalizes
well across other datasets. First, as summarized in table 2(a), to validate the
loss function LMAC in equation (4) which ensures object-centric gradient and
appearance consistency when training GARDiN, we used the L2 distance mea-
sure between real and generated images in the loss functions LAM , LMA, LA
and LM , and used a simple outlier detection technique based on a One-Class
SVM for detecting anomalies. By testing various combinations, we observe that
the fusion of all the losses produce the best result. Secondly, to find the most
appropriate distance metric that will be used in LMAC , we also tested several
combinations of distances based on L1 (dL1

), L2 (dL2
), SSIM (dss) and PSNR in-

spired by [10](dnr). Table 2(b) shows the importance of combining image quality
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distance metrics for better assessment of the correspondence between gradient
and appearance of objects. Lastly, we tested several unsupervised classification
approaches [23,4,20,19] for distinguishing normal and abnormal reconstruction
errors of generated images from GARDiN. The AUC results in table 2(c) confirm
that the adversarial method outperforms others by a large margin. We observe
that incorporating Focal Loss [8] when training ALREC [19] (ALREC-FL) no-
tably improves the performance for abnormal PMSRE detection.

We also evaluated the impact of the object detector on the overall AUC
results. We compared CenterNet [28] and RetinaNet [8] for this task. Table 3
shows that using a higher performance detector (CenterNet) noticeably improves
the anomaly detection performance, mostly on Ped1 and Avenue datasets which
contain the highest amount of occlusions and noise among the studied datasets.

4.5 Inference Running Time

On a Intel i5-9400F machine with 16 GB RAM using Nvidia RTX 2070 GPU with
8 GB VRAM and considering an average number of objects in a video frame of
5, the preprocessing step for the detection of objects and the extraction of their
gradient images takes about 75 ms per frame. In inference mode, the running
time of the combined GARDiN and ALREC-FL frameworks is approximately
5 ms per frame. Thus, the overall pipeline of our proposed method consumes
roughly 80 ms for a single frame, leading to a running speed of 12.5 FPS.

5 Conclusion

In this paper, we propose GARDiN-VAD: a novel unsupervised approach for
local anomaly detection in videos based on object-centric adversarial learning
trained using normal training samples only. First, we extract the appearance and
the gradient of all the objects in the scenes by using the pretrained CenterNet
object detector. Then, we train GARDiN, composed of two generators and two
discriminators to learn the relationship between appearance and gradient. After
that, we train ALREC-FL with PMSRE to classify abnormal PMSRE caused
by abnormal appearance-gradient relationships. On four public benchmarks, our
method yields competitive results, superior to state-of-the-art approaches.
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