Skip to main content

Data Augmentation for a Deep Learning Framework for Ventricular Septal Defect Ultrasound Image Classification

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12664))

Included in the following conference series:

Abstract

Congenital heart diseases (CHD) can be detected through ultrasound imaging. Although ultrasound can be used for immediate diagnosis, doctors require considerable time to read dynamic clips; typically, physicians must continuously examine disease data from beating heart images. Most importantly, this type of diagnosis relies heavily on the expertise and experience of the diagnosing physician. This study established an ultrasound image classification with deep learning algorithms to overcome the challenges involved in CHD diagnosis. We detected the most common CHD, namely the first, second, and fourth types of ventricular septal defect (VSD). We improved the performance levels of well-known deep learning algorithms (InceptionV3, ResNet, and DenseNet). Because algorithm optimization and overfitting problems can influence the performance of deep learning algorithms, we studied some optimizer algorithms and early-stopping strategies. To enhance the solution quality, we used data augmentation methods for solving this classification problem. The selected approach was further compared with Google AutoML, which applies structure search for quality prediction. Our results revealed that the proposed deep learning algorithm was able to recognize most types of VSD. However, one type of VSD remains unconquered and warrants more advanced techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avendi, M., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  2. Bridge, C.P., Ioannou, C., Noble, J.A.: Automated annotation and quantitative description of ultrasound videos of the fetal heart. Med. Image Anal. 36, 147–161 (2017)

    Article  Google Scholar 

  3. Carneiro, G., Nascimento, J.C.: Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2592–2607 (2013)

    Article  Google Scholar 

  4. Carneiro, G., Nascimento, J.C., Freitas, A.: The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans. Image Process. 21(3), 968–982 (2012)

    Article  MathSciNet  Google Scholar 

  5. Carvalho, J., et al.: Isuog practice guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet. Gynecol. 41(3), 348–359 (2013)

    Article  Google Scholar 

  6. Chen, H., Zheng, Y., Park, J.-H., Heng, P.-A., Zhou, S.K.: Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 487–495. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_56

    Chapter  Google Scholar 

  7. Gao, H., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  8. Ghesu, F.C., et al.: Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans. Med. Imag. 35(5), 1217–1228 (2016)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  13. Moradi, M., Guo, Y., Gur, Y., Negahdar, M., Syeda-Mahmood, T.: A cross-modality neural network transform for semi-automatic medical image annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 300–307. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_35

    Chapter  Google Scholar 

  14. Nascimento, J.C., Carneiro, G.: Multi-atlas segmentation using manifold learning with deep belief networks. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 867–871 IEEE (2016)

    Google Scholar 

  15. Pézard, P., et al.: Influence of ultrasonographers training on prenatal diagnosis of congenital heart diseases: a 12-year population-based study. Prenat Diagn. 28(11), 1016–1022 (2008)

    Article  Google Scholar 

  16. Poudel, R.P.K., Lamata, P., Montana, G.: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 83–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_8

    Chapter  Google Scholar 

  17. Sundaresan, V., Bridge, C.P., Ioannou, C., Noble, J.A.: Automated characterization of the fetal heart in ultrasound images using fully convolutional neural networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 671–674. IEEE (2017)

    Google Scholar 

  18. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  19. Wu, M.H., Chen, H.C., Lu, C.W., Wang, J.K., Huang, S.C., Huang, S.K.: Prevalence of congenital heart disease at live birth in Taiwan. J. Pediatrics 156(5), 782–785 (2010)

    Article  Google Scholar 

  20. Yeh, S.J., et al.: National database study of survival of pediatric congenital heart disease patients in Taiwan. J. Formos. Med. Assoc. 114(2), 159–163 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The data used in this study are restricted by the Research Ethics Review Committee of the Kaohsiung Veterans General Hospital with the number 19-CT8-10(190701-2) to protect participant privacy. We thank the Ministry of Science and Technology for supporting this research with ID MOST 107-2221-E-230-007 and MOST 108-2221-E-230-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, SH., Tai, IH., Chen, YH., Weng, KP., Hsieh, KS. (2021). Data Augmentation for a Deep Learning Framework for Ventricular Septal Defect Ultrasound Image Classification. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12664. Springer, Cham. https://doi.org/10.1007/978-3-030-68799-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68799-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68798-4

  • Online ISBN: 978-3-030-68799-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics