Skip to main content

A Weighted Federated Averaging Framework to Reduce the Negative Influence from the Dishonest Users

  • Conference paper
  • First Online:
Book cover Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12382))

  • 998 Accesses

Abstract

Federated learning becomes popular for it can train an excellent performance global model without exposing clients’ privacy. However, most FL applications failed to consider there exists fake local trained models returned from attackers or dishonest users. Not only would the fake parameters be harmful to the convergence of the global model but also be wasting of other users’ computational resources. In this paper, we propose a framework to grade the users’ credit score based on the performances of the returned local models on the testing dataset. We also consider historical data using the exponential moving average to give a relatively higher weight for the most recent testing results. The experiments show that our system can efficiently and effectively find out the fake local models and then speed up the convergence of the global model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, K., Lu, G., Luo, G., Cai, Z.: Seed-free graph de-anonymiztiation with adversarial learning. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 745–754 (2020)

    Google Scholar 

  2. Liang, Y., Cai, Z., Yu, J., Han, Q., Li, Y.: Deep learning based inference of private information using embedded sensors in smart devices. IEEE Netw. 32(4), 8–14 (2018)

    Article  Google Scholar 

  3. Liu, Y., et al.: Federated forest. IEEE Trans. Big Data (2020)

    Google Scholar 

  4. De Hert, P., Papakonstantinou, V., Malgieri, G., Beslay, L., Sanchez, I.: The right to data portability in the GDPR: towards user-centric interoperability of digital services. Comput. Law Secur. Rev. 34(2), 193–203 (2018)

    Article  Google Scholar 

  5. Zheng, X., Cai, Z., Li, Y.: Data linkage in smart internet of things systems: a consideration from a privacy perspective. IEEE Commun. Mag. 56(9), 55–61 (2018)

    Article  Google Scholar 

  6. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  7. Cai, Z., He, Z., Guan, X., Li, Y.: Collective data-sanitization for preventing sensitive information inference attacks in social networks. IEEE Trans. Dependable Secure Comput. 15(4), 577–590 (2018)

    Google Scholar 

  8. Cai, Z., Zheng, X.: A private and efficient mechanism for data uploading in smart cyber-physical systems. IEEE Trans. Netw. Sci. Eng. 7(2), 766–775 (2020)

    Article  MathSciNet  Google Scholar 

  9. He, Z., Cai, Z., Yu, J.: Latent-data privacy preserving with customized data utility for social network data. IEEE Trans. Veh. Technol. 67(1), 665–673 (2018)

    Article  Google Scholar 

  10. Zheng, X., Cai, Z.: Privacy-preserved data sharing towards multiple parties in industrial IoTs. IEEE J. Sel. Areas Commun. 38(5), 968–979 (2020)

    Article  Google Scholar 

  11. Zhu, H., Jin, Y.: Multi-objective evolutionary federated learning. IEEE trans. Neural Netw. Learn. Syst. 31(4), 1310–1322 (2019)

    Article  Google Scholar 

  12. Zhuo, H.H., Feng, W., Xu, Q., Yang, Q., Lin, Y.: Federated reinforcement learning. arXiv preprint arXiv:1901.08277 (2019)

  13. Pang, J., Huang, Y., Xie, Z., Han, Q., Cai, Z.: Realizing the heterogeneity: a self- organized federated learning framework for IoT. IEEE Internet Things J. (2020)

    Google Scholar 

  14. Smith, V., Chiang, C.-K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learning. In: Advances in Neural Information Processing Systems, pp. 4424–4434 (2017)

    Google Scholar 

  15. Kang, J., Xiong, Z., Niyato, D., Zou, Y., Zhang, Y., Guizani, M.: Reliable federated learning for mobile networks. IEEE Wirel. Commun. 27(2), 72–80 (2020)

    Article  Google Scholar 

  16. Li, T., Sanjabi, M., Smith, V.: Fair resource allocation in federated learning. ArXiv abs/1905.10497 (2020)

    Google Scholar 

  17. Klinker, F.: Exponential moving average versus moving exponential average. Mathematische Semesterberichte 58(1), 97–107 (2011)

    Article  MathSciNet  Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported, in part, by the SunTrust Fellowship Grant (ST20-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, F., Huang, Y., Zhu, S., Malladi, V., Wu, Y. (2021). A Weighted Federated Averaging Framework to Reduce the Negative Influence from the Dishonest Users. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2020. Lecture Notes in Computer Science(), vol 12382. Springer, Cham. https://doi.org/10.1007/978-3-030-68851-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68851-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68850-9

  • Online ISBN: 978-3-030-68851-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics