
ar
X

iv
:2

00
3.

02
38

8v
2

 [
cs

.C
R

]
 5

 A
ug

 2
02

0

Finding linearly generated subsequences

Claude Gravel1, Daniel Panario2, and Bastien Rigault3

1 National Institute of Informatics
Tokyo, Japan

claudegravel1980@gmail.com

Currently working at EAGLYS (Tokyo, Japan)

2School of Mathematics and Statistics
Carleton University, Canada
daniel@math.carleton.ca

3National Institute of Informatics
Tokyo, Japan

rgaultb@gmail.com

August 6, 2020

Abstract

We develop a new algorithm to compute determinants of all possible
Hankel matrices made up from a given finite length sequence over a fi-
nite field. Our algorithm fits within the dynamic programming paradigm
by exploiting new recursive relations on the determinants of Hankel ma-
trices together with new observations concerning the distribution of zero
determinants among the possible matrix sizes allowed by the length of
the original sequence. The algorithm can be used to isolate very effi-
ciently linear shift feedback registers hidden in strings with random prefix
and random postfix for instance and, therefore, recovering the shortest
generating vector. Our new mathematical identities can be used also in
any other situations involving determinants of Hankel matrices. We also
implement a parallel version of our algorithm. We compare our results
empirically with the trivial algorithm which consists of computing deter-
minants for each possible Hankel matrices made up from a given finite
length sequence. Our new accelerated approach on a single processor is
faster than the trivial algorithm on 160 processors for input sequences of
length 16384 for instance.

Keywords: generating polynomial, linear algebra over finite fields,
quotient-difference tables, Hankel matrices, linear shift feedback registers,
pattern substrings, Berlekamp-Massey algorithm

1

http://arxiv.org/abs/2003.02388v2

1 Notation, facts and definitions

Let q be a prime power, n > 0, and x = (xi)
n−1
i=0 ∈ F

n
q . For integers 1 ≤ j ≤

⌈

n
2

⌉

and j − 1 ≤ i < n− j + 1, define the matrix Xi,j by

Xi,j =











xi . . . xi+j−2 xi+j−1

xi−1 . . . xi+j−3 xi+j−2

...
. . .

...
...

xi−j+1 . . . xi−1 xi











. (1)

By convention, we let Xi,0 = 1 for 0 ≤ i < n. Every matrix Xi,j is a Hankel
matrix.

Hankel matrices have a large number of applications in applied mathematics.
In this paper we are interested in Hankel matrices over finite fields. We explore
the well known connection of Hankel matrices and sequences over finite fields; for
an introductory explanation see Section 8.6 in [13]. Hankel matrices are strongly
connected to coprime polynomials over finite fields. Indeed, the probability of
two monic polynomials of positive degree n over Fq to be relatively prime is
the same as the uniform probability for an n × n Hankel matrix over Fq be
nonsingular [6, 7]. Elkies [5] studies the probability of Hankel matrices over finite
fields be nonsingular when independent biased entries are used for the matrix.
An algorithm to generate a class of Hankel matrices called superregular (that
are related to MDS codes) is given in [16]. Finally, we point out that several
results and applications of Hankel matrices over finite fields are given in the
Handbook of Finite Fields [14]. In particular, see Section 13.2 for enumeration
and classical results, Section 14.8 for connections to (t, m, s)-nets, and Section
16.7 for hardware arithmetic for matrices over finite fields. In this paper, we
give a new algorithm to compute determinants of all possible Hankel matrices
made up from a given finite length sequence over a finite field.

We denote by di,j the determinant of Xi,j . By definition of Xi,j , we have
for all i

di,0 = 1, di,1 = xi, di,j = det Xi,j .

For convenience, let h =
⌈

n/2
⌉

. We use the determinants to form a quotient-
difference table [10, 18]. If h is odd, the determinants form a triangle:

0 : 1 1 . . . 1 1 1 . . . 1 1
1 : x0 x1 xh xn−2 xn−1

2 : d2,1 d2,2 d2,n−3 d2,n−2

3 : d3,2 d3,n−3

4 :
. . .

...
...

...
. . .

...
...

h : dh,h

If n is even, then the triangle is truncated at the hth level where there are two
elements dh,h and dh,h+1. We observe that i refers to columns and j refers to
rows.

2

For integers i0, i1, j0, j1 such that i1 > i0, h ≥ j1 − j0 > 0, consider the
set S(i0, i1, j0, j1) = {(i, j) ∈ N × N | i0 ≤ i ≤ i1, j0 ≤ j ≤ j1, j1 − 1 ≤ i <
n− j1 + 1}. We observe that S is nonempty and may have a k-side polygonal
shape with 3 ≤ k ≤ 6. Section 4 gives two examples, one with n = 32, k = 6,
and one with n = 81, k = 4. We see that the tip of the triangular table from
the example with n = 32 has length two, and therefore it yields to an hexagonal
case. For a detailed explanation, see Section 4. If S falls entirely inside the
table, then k = 4 necessarily, that is, we have a square of zeros. If S overlaps
with the edges of the triangular table, then k may be different than 4. We use
∂S to denote the boundary of S. We prove in this work that zeros in a difference
table are always distributed or grouped according to S.

Our goal is to design a dynamic programming algorithm to fill the table that
requires the least number of determinant evaluations. More precisely, if we know
the first j − 1 rows of the table, then we want to compute determinants for the
jth row by using the least possible number of rows above the jth. In Section 2,
we establish relations among determinants di,j ’s no matter how x is generated.
Our results amplify any linear patterns that could be used to generate the
coordinates of x. We show that any run of zeros in the table automatically
implies a run of zeros exactly below the former so that we obtain a square of
zeros. Moreover, we prove identities, that we call cross shape identities, relating
determinants di,j ’s located on a cross as explained later; those identities are
based on Sylvester’s identities, generalized by Bareiss [2], as well as Dogson’s
identity [1, 11].

It would be possible to avoid the evaluations of determinants of matrices
by generalizing determinantal identities given in Conjecture 1 from Section 2.
More precisely, in a true random sequence of length n, the expected length of
the maximum run of zeros is O(log2 n). Therefore using the recursive nature
of determinants, and especially determinants of Hankel matrices, we conjecture
that the evaluations of determinants of matrices larger than about O(log2 n)
are not required to complete the table above which would lead to a linear time
algorithm to locate the linear subsequence. Our algorithm may also be used as
a statistical test to determine linearity in a pseudo-random sequence.

In Section 3, we apply results from Section 2 to the case of a sequence
x = (xi)

n
i=1 that contains a linearly shifted and fed back subsequence.

Definition 1. Using x = (xi)
n−1
i=0 as above, let c = (c0, . . . , cd−1) ∈ F

d
q with

cd−1 = 1 and d < n− 1. The sequence x contains a linear subsequence if there
are integers s and t with d ≤ s ≤ t < n such that for all s ≤ ℓ ≤ t we have

d−1
∑

i=0

cixℓ−d+i = 0.

Indeed one of our motivations is to identify the indices s and t as well as to
find the generating vector c. This relates our work to the Berlekamp-Massey
algorithm. As shown later our method does not assume any upper bound on
the length of c or equivalently on the degree of the generating polynomial in the
framework of Berlekamp-Massey.

3

Given a prime power q, d > 0, and a sequence x = (xi)
∞

i=0 with xi ∈ Fq, the
Berlekamp-Massey algorithm is an iterative algorithm that finds the shortest
linear feedback shift register (LFSR) that generates x. A register of size d over
Fq is an element of Fd

q . More precisely, an LFSR consists of an initial register

(x0, x1, . . . , xd−1) ∈ F
d
q , a non zero vector c = (c0, . . . , cd−1) ∈ F

d
q such that for

i ≥ 0

(xi, xi+1, . . . , xi+d−2, xi+d−1) −→ (xi+1, xi+2, . . . , xi+d−1,

d−1
∑

j=0

cjxi+j). (2)

The arrow in Equation (2) expresses the transition. The state of a system at a
point in time is the content of the register. In Equation (2), the system tran-
sits from the state (xi, xi+1, . . . , xi+d−2, xi+d−1) to (xi+1, xi+2, . . . , xi+d−1, xi+d)
where xi+d is a given as linear combination of the previous xi’s. The content of
the register at time i + d− 1 is being fed back into the right end of it through
the linear combination

∑d−1
j=0 cjxi+j . At time i + d, the register is updated to

(xi+1, xi+2, . . . , xi+d−1, xi+d) where xi+d = c0xi + c1xi+1 + · · ·+ cd−1xi+d−1.
For more information on the Berlekamp-Massey algorithm, see [3] where

interesting connections between this algorithm and the extended Euclidean al-
gorithm are given. LaMacchia and Odlyzko [12] also review how Berlekamp-
Massey algorithm is used in the Wiedemann algorithm to find linear recurrences
over finite fields and also show interesting connections to determinants of Hankel
matrices. For more information on LFSR sequences, see [8, 9].

We conclude the section giving the structure of the paper. Section 2 gives
several theoretical relations among Hankel determinants that are crucial in this
paper. Those relations are used in Section 3 where we provide our algorithm
to compute all determinants from Hankel matrices. Illustrative examples over
F2 are given in Section 4. Due to the lack of space, experimental runs of our
algorithm against a standard method of computation are given in Appendix 5.
We compare our results empirically with the trivial algorithm which consists of
computing determinants for each possible Hankel matrices made up from a given
finite length sequence. Our new accelerated approach on a single processor is
faster than the trivial algorithm on 160 processors for input sequences of length
16384 for instance as shown in Section 5.

2 Relations among Hankel determinants

In this section, we derive useful results to allow the computations of di,j without
actually computing explicitly or directly determinants of size j and instead using
determinants di,j′ with j < j′. Then in Section 3, we fill the triangular table
using a dynamic programming approach. Before that, let us recall one of the
results from [2] applied to Hankel matrices and adapted to our notation. If i, j
are such that i0 < i < i1, j0 ≤ j ≤ j0 + (i1 − i0 − 1), and with the convention

4

that di,0 = 1, di,1 = xi, then

di,jdj−j0

i,j0−1 = det







di,j0
. . . di+j−j0,j0

...
. . .

...
di−(j−j0),j0

. . . di,j0






. (3)

Equation (3) is called a jth-step integer preserving identity in [2]. We call an
identity like in Equation (3) a cross shape identity because di,j , di,j0

and di,j0−1

are located on the vertical part of a cross, and the other non-diagonal elements
of the matrix are located on the horizontal part of the aforementioned cross. A
visual representation of Equation (3) is as follow:

0 : 1 1 . . . 1 . . . 1 . . . 1 . . . 1 1
1 : x0 x1 . . . xi−j+j0

. . . xi . . . xi+j−j0
. . . xn−2 xn−1

...
. . .

...
...

...
...

j0 − 1 :
. . . di,j0−1

...

j0 : di−j+j0,j0
. . . di,j0

. . . di+j−j0 ,j0

...
...

...
...

j : di,j

...
...

We come back to Equation (3) at the end of this section with a brief explanation
of its proof. Equation (3) remains valid even if di,j0−1 = 0 as pointed in [2].

Theorem 1. Let i0 < i < i1, and j0 be such that di,j0
6= 0, di,j0+1 = 0,

di0,j0+1 6= 0, di1,j0+1 6= 0. Then with j1 = j0 + (i1 − i0) and S(i0, i1, j0, j1)
non-empty, we have

di,j = 0 for all (i, j) ∈ S(i0, i1, j0, j1),

di,j 6= 0 for all (i, j) ∈ ∂S(i0, i1, j0, j1).

Proof. Without loss of generality, assume that S falls entirely inside the table
with left and right boundaries at (i0, j0) and (i1, j0), respectively, and with
upper and lower boundaries at (i0, j0) and (i0, j1), respectively. To fall entirely
inside the table, one must have 2(i0 + 1) − i1 ≥ 0 so that the Hankel matrix
Xi0,i1−i0−1 is properly defined; the number of consecutive zeros on level j0 that
occur between i0 and i1 is i1 − i0 − 1.

Fix i such that i0 < i < i1 and let j0 ≤ w ≤ j0 + (i1 − i0 − 1). Then
using Equation (3) with w = j0 + 1 as the basis for induction, we obtain that
di,j0+1 = 0, that is, we obtain the second row of zeros below the first one. For
the inductive step, assume that di,w′ = 0 for j0 ≤ w′ < w, and rewrite Equation
(3) as

di,w = dj0−w
i,j0−1 det







di,j0
. . . di+w−j0,j0

...
. . .

...
di+j0−w,j0

. . . di,j0






.

5

Therefore at least one row of the previous matrix is made only of zeros which
implies the desired result.

We remark that Theorem 1 does not depend on the input sequence, and it is
solely a property of determinants for Hankel matrices. If for instance the input
sequence is chosen entirely at random with independent identically unbiased
distributed Bernoulli random variables, then the biggest squares have average
side length O(log2 n) which is the expected length of the longest run of zeros in
a random sequence of Bernoulli random variables with length n.

Given a square matrix X of size ℓ × ℓ, we consider its sub-matrix C of size
(ℓ − 2) × (ℓ − 2) located in the center X, and its 4 sub-matrices N, S, E and
W of size (ℓ − 1)× (ℓ − 1) located in the top left, bottom right, top right and
bottom left of X, respectively. In other words let

X =







x1,1 . . . x1,ℓ

... C
...

xℓ,1 . . . xℓ,ℓ







=







N
x1,ℓ

...
xℓ,1 . . . xℓ,ℓ






=







x1,1 . . . x1,ℓ

...
xℓ,1

S







=







x1,1 . . . x1,ℓ

W
...

xℓ,ℓ






=







x1,1

...
E

xℓ,1 . . . xℓ,ℓ






.

Then we have Dodgson’s identity (see [1], or page 29 of [11]):

det(X) det(C) = det(N) det(S)− det(E) det(W). (4)

If the entry xℓ,ℓ is an unknown and all other elements of X are known, then, for
some α, β ∈ Fq, we have that

(

xℓ,ℓ det(N) + α
)

det(C) = det(N)
(

xℓ,ℓ det(C) + β
)

− det(E) det(W). (5)

Equation (5) implies that xℓ,ℓ cannot be determined if det(N) = 0 or det(C) =
0. This simply implies that xℓ,ℓ cannot be determined from a determinantal
equation of the type obtained by Dodgson’s identity.

We now derive a useful identity using Equation (4) which can also be proved
using results from [2].

Proposition 1 (North-South-East-West). For all (i, j) such that i− j + 1 ≥ 0,

and 2 ≤ j ≤
⌈

n/2
⌉

the following identity is true:

di,jdi,j−2 = d2
i,j−1 − di+1,j−1di−1,j−1.

Proof. Apply Equation (4) on the matrix Xi,j given from (1) where det(W) =
di−1,j−1, det(E) = di+1,j−1, det(N) = di,j−1, det(S) = di,j−1, and det(C) =
di,j−2.

6

We observe that Proposition 1 is reminiscent to the North-South-East-West
identity [19] for quotient-difference table. Proposition 1 is similar to the 1st-
order step integer preserving relation from [2] with a much easier proof. The
condition di,j−2 6= 0 is not required as explained in [2], or as it follows directly
from Equation (4), but it matters for our dynamic programming method since
we cannot determine di,j if di,j−2 = 0 using the table information from the
(j − 1)th and (j − 2)th rows.

In order to accelerate the computation of determinants within a dynamical
programming approach, we must ensure that di,j0−1 6= 0 from Equation (3).
For that we have the next theorem.

Theorem 2. For all (i, j) such that i− j + 1 ≥ 0, and j0 ≤ j ≤
⌈

n/2
⌉

, if

di,j0−1 6= 0, di,k = 0 for j0 ≤ k ≤ j − 1,

then

di,j = dj0−j
i,j0−1 det







di,j0
. . . di+j−j0,j0

...
. . .

...

di−(j−j0),j0
. . . di,j0






.

Proof. Before starting, for a fixed position i and for any size j0, we observe that
the value j − j0 expresses the depth of singularity, that is, the number of zeros
below the non-zero cell indexed by (i, j0−1). The depth of singularity also relates
to the concentration of zeros aligned horizontally around the cell (i, j0 − 1). By
concentration of zeros, we mean the length of a run of consecutive zeros.

(j = j0 + 1)th step: Suppose that di,j0−1 6= 0 and di,j0
= 0. If di,j0+1 = 0,

then there is at least one zero to the left or to the right of (i, j0) or both. Indeed
Proposition 1 entails that di,j0+1di,j0−1 = d2

i,j0
− di+1,j0

di−1,j0
which, in this

case, is equivalent to di,j0+1di,j0−1 = −di+1,j0
di−1,j0

from which we infer that
either di−1,j0

= 0 or di+1,j0
= 0 whenever di,j0+1 = 0. So there is qualitatively

speaking a small concentration of zeros aligned horizontally around the cell
(i, j0).

(j = j0 + 2)th step: Now suppose that di,j0−1 6= 0, di,j0
= di,j0+1 = 0 and

write

0 = di,j0+1d2
i,j0−1 = det





0 di+1,j0
di+2,j0

di−1,j0
0 di+1,j0

di−2,j0
di−1,j0

0



 .

By the (j = j0 +1)th-step, if di+1,j0
= 0, then 0 = di,j0+1d2

i,j0−1 = d2
i−1,j0

di+2,j0

from which either di−1,j0
= 0 or di+2,j0

= 0; if di−1,j0
= 0, then 0 = di,j0+1d2

i,j0−1

= d2
i+1,j0

di−2,j0
from which either di+1,j0

= 0 or di−2,j0
= 0. Therefore we con-

clude that di−1,j0
= di+1,j0

= 0 as well. The horizontal part of the cross contains
therefore a higher concentration of zeros around di,j0

with respect to the pre-
vious step. We cannot conclude at this moment that di+1,j0

= 0 = di+2,j0
or

di−1,j0
= 0 = di−2,j0

without further adding deeper singularities.

7

(j = j0 + 3)th step: Now suppose that di,j0−1 6= 0 and di,j0
= di,j0+1 =

di,j0+2 = 0 and write

0 = di,j0+2d3
i,j0−1 = det









0 di+1,j0
di+2,j0

di+3,j0

di−1,j0
0 di+1,j0

di+2,j0

di−2,j0
di−1,j0

0 di+1,j0

di−3,j0
di−2,j0

di−1,j0
0









. (6)

From the (j = j0 + 2)th step, di−1,j0
= 0 = di+1,j0

, and Equation (6) is equiva-
lent to

0 = di,j0+2d3
i,j0−1 = det









0 0 di+2,j0
di+3,j0

0 0 0 di+2,j0

di−2,j0
0 0 0

di−3,j0
di−2,j0

0 0









= d2
i+2,j0

d2
i−2,j0

,

so that either di−2,j0
= 0 or di+2,j0

= 0. With the knowledge of the (j0 + 2)th-
step, we can safely conclude that either di+1,j0

= 0 = di+2,j0
or di−2,j0

= 0 =
di−1,j0

. Hence the concentration of zeros increases on the j0th row with respect
to the previous steps. We observe that the previous determinant has at least
one row with 3 consecutive zeros. The position of a run of zeros from one row
to the following is shifted cyclically by one position.

The process stops when we can no longer add deeper singularity, that is, we
stop for the smallest index j > j0 such that di,j 6= 0. When such index j is
found, then we can no longer deduce zero determinants on the horizontal part
of the cross.

jth step: Assume that di,j0−1 6= 0 and di,k = 0 for j0 ≤ k ≤ j− 1, and now
assume di,j 6= 0. The matrix to consider at this step has size (j + 1)× (j + 1).

Thus at this current jth-step, we can find di,jdj−j0

i,j0−1 6= 0. We observe that we
hit the boundaries of a square of zeros. At the following (j + 1)th step, all rows
would contain at least 2 non-zero elements or equivalently there would not be a
row with at least j + 1 consecutive zeros. Thus di,j+1dj+1−j0

i,j0−1 would be the sum
of at least two products and it would become impossible to correctly deduce the
values of the determinants.

Now we work for our next result, a partially proved conjecture. Given valid
indices i, j for the column and the row of the triangular table of determinants,
and 2k ≤ j let Gi,j,k be a matrix of size (k + 1)× (k + 1) defined as

Gi,j,k =











di,j−2k di+1,j−2k+1 . . . di+k,j−k

di−1,j−2k+1 di,j−2k+2 . . . di+k−1,j−k+1

...
...

. . .
...

di−k,j−k di−k+1,j−k+1 . . . di,j











. (7)

In other words, for 0 ≤ r, c ≤ k, the entry of Gi,j,k located on the rth row and cth
column is given by di−r+c,j−2k+r+c. The pair (i−r+c, j−2k+r+c) indexing an

8

element of Gi,j,k is the intersection of two perpendicular lines. The intersection
of a group of k parallel lines intersecting perpendicularly another group of k
parallel lines as it might be easier to see with the following representation by
drawing k lines with slope π/4 and separated at distance

√
2 intersecting k other

lines with slope 3π/4 also at distance
√

2 of each other:

. . . i − k i − k + 1 . . . i − 1 i i + 1 . . . i + k − 1 i + k . . .

0 . . . 1 1 . . . 1 1 1 . . . 1 1 . . .

1 . . . xi−k xi−k+1 . . . xi−1 xi xi+1 . . . xi+k−1 xi+k . . .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

j − 2k di,j−2k

j − 2k + 1 di−1,j−2k+1 di+1,j−2k+1

.

.

.

.
.

.

.
.

.

j − k − 1 di−k+1,j−k−1 di−k+1,j−k−1

j − k . . . di−k,j−k di,j−k di+k,j−k . . .

j − k + 1 di−k+1,j−k+1 di−k+1,j−k+1

.

.

.

.
.
.

.
.

.

j − 1 di−1,j−1 di+1,j−1

j di,j

.

.

.

.

.

.

If the information about the determinants di,j′ , 0 ≤ j′ ≤ j − 1, is known,
then we might hope to solve a determinantal equation like det(Gi,j,k) = g for
some g ∈ Fq for the unknown di,j located in the bottom right corner of Gi,j,k.

We may sometimes abuse the language to denote the index (i, j) or the
value indexed by (i, j) which is di,j . It is very convenient to refer to k as a
radius of an ℓ1-ball centered around di,j−k or more precisely around the index
(i, j − k). An ℓ1-ball is a square grid. The grid can be seen as the intersection
of the two families of parallel lines and each family perpendicular to each other
as mentioned previously. The indices obtained by the intersection of the two
families are used to define Gi,j,k. We refer the neighbourhood around (i, j− k),
which is the center of the grid, as the ℓ1-ball of radius k. If k is even, then the
center (i, j − k) is deleted. If k is odd, then the center is part of the ball. If
det(Gi,j,k) = 0, then there is a local linear dependency around (i, j − k). From
Dodgson’s identity, Gi,j,k−2 plays the role of the center which can be seen as
the interior of the neighbourhood of (i, j − k).

We postulate the following conjecture about the local linear dependency or
more precisely about the minimum amount of information required to determine
di,j assuming the table is known up to the (j − 1)th level, inclusively.

Conjecture 1. For 2 ≤ k ≤ 6, j ≥ 2k, and j − 1 ≤ i ≤ n − j, where n
is the length of the sequence, the smallest radius k for which det Gi,j,k = 0 is

the smallest value k for which det Gi,j,k−1 6= 0. Assuming det Gi,j,k′ = 0 for

2 ≤ k′ ≤ 6, then we have det Gi,j,7 = 0 if and only det Gi,j,6 6= 0 and di,j−7 = 0.

9

We recall from linear algebra that the condition det(Gi,j,k−1) 6= 0 is nec-
essary and sufficient for the uniqueness to the solution of the linear equation
det(Gi,j,k) = 0 with di,j as unknown for all value of k and j ≥ 2k.

We verified the previous conjecture by comparing di,j obtained from solving
the corresponding determinantal equation with the value obtained from the
trivial algorithm. Given that we never found any counter-example to Conjecture
1, we decided to include its algorithmic flavour, that is Algorithm 1, in our
dynamic method given in Algorithm 2.

Algorithm 1 Growing an ℓ1-metric ball and solving for the unknown

Input: Integer n > 0, 2 ≤ k ≤ 7, j ≥ 2k, and j − 1 ≤ i ≤ n− j
1: if k ≤ 6 then

2: for k′ = 2 to k do

3: if det(Gi,j,k′−1) 6= 0 then

4: Solve det(Gi,j,k′) = 0 with di,j as unknown
5: Return di,j

6: end if

7: end for

8: else if k = 7, det(Gi,j,6) 6= 0, di,j−7 = 0 then

9: Solve det(Gi,j,7) = 0 with di,j as unknown
10: Return di,j

11: else

12: k out of range // We need more research for larger radius k.
13: end if

We finish by briefly explaining Equation (3) as we promised at the beginning
of this section. Given a square matrix A of size h × h, with h = ⌈n/2⌉, we
introduce the notation from [2]

a(k)
r,c = det















a0,0 a0,1 . . . a0,k−1 a0,c

a1,0 a1,1 . . . a1,k−1 a1,c

...
...

. . .
...

...
ak−1,0 ak−1,1 . . . ak−1,k−1 ak−1,c

ar,0 ar,1 . . . ar,k−1 ar,c















for k ≤ r, c ≤ h.

Clearly a
(k)
r,c is the determinant of a (k + 1)× (k + 1) matrix. We observe that

the principal minors of A are a
(k)
k,k. In [2], it is shown that

a(k)
r,c =

1
(

a
(ℓ−1)
ℓ,ℓ

)k−ℓ
det













a
(ℓ)
ℓ,ℓ . . . a

(ℓ)
ℓ,k−1 a

(ℓ)
ℓ,c

...
. . .

...
...

a
(ℓ)
k−1,ℓ . . . a

(ℓ)
k−1,k−1 a

(ℓ)
k−1,c

a
(ℓ)
r,ℓ . . . a

(ℓ)
r,k−1 a

(ℓ)
r,c













for 0 < ℓ < k. (8)

So a
(k)
r,c is also the determinant of a (k−ℓ+1)×(k−ℓ+1) matrix of determinants.

The left side of Equation (8) does not depend on ℓ. Let us concentrate on the

10

principal minors when r = c = k, and substitute ℓ = j0 and k = j in Equation
(8) to get that

a
(j)
j,j =

1
(

a
(j0−1)
j0,j0

)j−j0
det













a
(j0)
j0,j0

. . . a
(j0)
j0,j−1 a

(j0)
j0,j

...
. . .

...
...

a
(j0)
j−1,j0

. . . a
(j0)
j−1,j−1 a

(j0)
j−1,j

a
(j0)
j,j0

. . . a
(j0)
j,j−1 a

(j0)
j,j













for 0 < j0 < j.

Entries (determinants) inside of the previous matrix are those dj−j0,j0
’s intro-

duced at the beginning of this section. We observe that we can shift j − j0 by
any quantity modulo n and therefore get Equation (3).

3 Algorithm to compute determinants of Han-

kel matrices over finite fields

In the following algorithm, the symbol j indexes the rows of the table and j is
the size of the Hankel matrix Xi,j as in the introduction. The symbol i indexes
the columns and is related to the position in the input vector x from where we
build the Hankel matrix Xi,j . We use the symbol M to denote the dynamic
table under consideration, and M [j][i] stands for di,j = det Xi,j . The table
grows from top to bottom by considering the smallest possible Hankel matrices
to the largest one if n is odd or the largest two if n is even. For a given matrix
of size j or equivalently a given row j of M , the algorithm sweeps from the left
to the right using the input vector x in order to consider all possible Hankel
matrices of size j. We use also M [j][·] to refer to the jth row of the table M .

Algorithm 2 Computing determinants for all possible Hankel matrices made
up from a sequence x ∈ F

n
q

Input: Integer n > 0 and vector x ∈ F
n
q .

Output: Triangular table M .
1: h← ⌈n/2⌉
2: M ← ∅ // Allocate space for M with base h and width n.
3: for i = 0 to n− 1 do // Initialize first two rows M .
4: M [0][i]← 1
5: M [1][i]← xi

6: end for

7: for j = 2 to h do

8: Find new squares of zeros // Use Theorem 1 with the knowledge
of rows M [j − 1][·] and M [j − 2][·].

9: for i = j − 1 to n− j do // Loop is parallelized.
10: if M [j][i] has not been yet evaluated then

11: if M [j − 2][i] 6= 0 then

12: Compute M [j][i] using Proposition 1
13: else if Conditions for Conjecture 1 then

11

14: Compute M [j][i] accordingly with Algorithm 1
15: else if Conditions for Theorem 2 then

16: Compute M [j][i] accordingly
17: else

18: Compute M [j][i] explicitly from its definition
19: end if

20: end if

21: end for

22: end for

Based on the results from Section 2, the algorithm correctly terminates. We
note that an auxiliary table can be maintained to flag entries of M that were
computed or not. Given j from line (7), to find squares of zeros using M [j−1][·]
and M [j − 2][·], we look for consecutive non zero elements between two indices,
say i0 and i1 (including M [j − 2][i0] 6= 0 and M [j − 2][i1] 6= 0) at level j − 2,
then check for M [j− 1][i0] 6= 0 followed by zero elements until M [j− 1][i1] 6= 0;
the procedure begins with i0 = j − 1 and if i1 is found to be the right upper
corner, then a square is filled, and the procedure continues from i1 until reaching
n− j. Once the squares are filled, the remaining elements on a given row must
be evaluated. The goal is to use as few as possible knowledge from the previous
rows by using Proposition 1, Theorem 2, and Conjecture 1. If none of the
previous results applied, then we revert to the trivial and expensive evaluation.

We end this section by explaining briefly how to find the generating vector
of a linear subsequence. Once an unusual long run of zeros is found on a row
of the table, we stop the computations of determinants since actually there is
no need to further complete the table. Indeed, all the knowledge we need to
build the adjugate, in order to invert a Hankel matrix connecting the generating
vector to a part of the original sequence, is located on the previous rows that
had been already computed.

4 Illustrative visual examples

In this section, we give two examples illustrating our new results over F2. For
the first example, we generate a sequence of length 32 indexed from left to right
starting with index 0, ending with index 31, and which is given by

01010110100111010011101011101110

Red color represents the prefix and the postfix that are generated randomly.
Green color represents the middle linear substring. The big square of zeros
due to the linearity of the middle string is in blue color. The sequence is used
to initialize the table so it is identical to the row indexed by 1 below. Row 0
contains only unit elements. The generating vector is (1, 0, 1, 1) = (c0, c1, c2, c3).
We note that as mentioned previously, c3 = 1 to ensure the vector is not trivial.
The leftmost index of linear subsequence is 8, that is i0 = 8, and so the generated
random prefix is 01010110 = x0x1 · · ·x7. The rightmost index of the linear
subsequence is 24, and the generated random postfix is 11101110 = x24 · · ·x31.

12

The middle linearly substring is given by 1001110100111010 = x8x9 · · ·x23,
and is generated linearly from the prefix string: c3x8 + c2x7 + c1x6 + c0x5 = 0
implies x8 = c2x7 + c1x6 + c0x5 = x7 + x5 = 0 + 1 = 1, x9 = x8 + x6 = 1 + 1 =
0, x10 = x9 + x7 = 0 + 0 = 0, and so on.

Since the generating vector has length 4, then the row at which appears a
long run of zeros is on the row indexed by 4. The shape of S is hexagonal, and
the values of j1 varies with those of the positional indices i. The value j0 = 4.

0 :11111111111111111111111111111111

1 :01010110100111010011101011101110

2 : 111111110010111001011111011101

3 : 0010011111111111111101111011

4 : 01001000000000000011101111

5 : 111100000000000001111100

6 : 0110000000000000100110

7 : 11000000000000010011

8 : 100000000000001111

9 : 0000000000000100

10 : 00000000000010

11 : 000000000001

12 : 0000000000

13 : 00000000

14 : 000000

15 : 0000

16 : 00

For the second example, we generate a sequence of length 81 indexed from
left to right starting with index 0, ending with index 80, and which is given by
101100000010101111011010110101100100011110101100100010101111011001100110000000100

0 :111

1 :101100000010101111011010110101100100011110101100100010101111011001100110000000100

2 : 1110000001111100111111111111110010001001111110010001111100111100110011000000010

3 : 01000000100110010001010010101111000100110101111000100110010011111111100000001

4 : 100000010011111000111001111111111111111111111111110011111001000000010000000

5 : 0000001111010100011111110000000000000000000001101111010111100000001000000

6 : 00000101111111111000001000000000000000000000111111111111010000000100000

7 : 111111100000111100000100000000000000000000010000000010111000000010000

8 : 0010110000010010000010000000000000000000001000000001111100000001111

9 : 01111000001001000001000000000000000000000100000000100010000000100

10 : 100100000111100000100000000000000000000010000000010001000000010

11 : 0010000011111111110000000000000000000001000000001000111111111

12 : 11111111000000001000000000000000000000100000000111111010010

13 : 000001100000000100000000000000000000010000000011110111001

14 : 0000110000000010000000000000000000001000000001001111111

15 : 00011000000001000000000000000000000111111111100110001

16 : 001100000000100000000000000000000011111101111111000

17 : 0110000000010000000000000000000001000011100100100

18 : 11000000001000000000000000000000100001010010011

19 : 100000000100000000000000000000010000111111111

20 : 1111111110000000000000000000001000010010011

21 : 11110001000000000000000000000111111001001

22 : 001000100000000000000000000010101111111

23 : 0100010000000000000000000001111100000

24 : 11111000000000000000000000100110000

25 : 001100000000000000000000010011000

26 : 0111111111111111111111111111100

27 : 10111100011010001101000001010

28 : 110010001111000111100000111

29 : 1001000101100010110000011

30 : 11111111111111111000001

31 : 001110000000000100000

32 : 0101000000000011111

33 : 11100000000001010

34 : 110000000000111

35 : 1000000000010

36 : 00000000001

37 : 000000000

38 : 0000000

39 : 00000

40 : 000

41 : 1

13

In this case the generating vector is (1, 0, 0, 1, 1) = (c0, c1, c2, c3, c4). The left-
most index of the linear subsequence is 30, and the rightmost index of linear sub-
sequence is 50. The shape of S is a square and i0 = 30, i1 = 50, j0 = 5, and j1 =
j0 + (i1 − i0) = 25 as it can be seen as well from the visual aid. The prefix ran-
dom string is given by x0x1 · · ·x29 = 101100000010101111011010110101. The
postfix random string is x50x51 · · ·x80 = 0010101111011001100110000000100.
The middle linear substring is given by x30 · · ·x49 = 10010001111010110010.

5 Conclusion and further work

We believe that there are still more relations to be found and to be coded in order
to avoid the computation of determinants, and this is currently under study. An
ultimate goal is to get rid entirely of the evaluations of large determinants by
proving and generalizing Conjecture 1. How would the linear dependency vanish
as the radius gets larger or synonymously how far does it propagate around the
center? Can we further enlarge the radius by adding new conditions for k > 7?

It would be interesting to adapt our algorithm to output the generating
vector and compare it to efficient implementations of the Berlekamp-Massey
algorithm. We would need to stop at the level containing a long run of zeros
and use the information of the row preceding this one to solve efficiently the
linear system for the generating vector using adjugate matrices.

It is known that Berlekamp-Massey algorithm is virtually the same as the
extended Euclidean algorithm for polynomials over finite field. Could we find
a similar equivalence to our algorithm for problems involving Bezout identities
that express linear dependencies among elements in fields?

Our dynamic approach can be easily adapted to multiple and combined linear
feedback shift registers. Further research also includes to analyze the case of
non-linear feedback shift register by linearizing the generator; more precisely,
linearizing a non-linear boolean feedback function pertains to add constraints
which are reflected in the determinant identities.

References

[1] Francine F. Abeles. Chiò’s and Dodgson’s determinantal identities. Linear

Algebra and its Applications, 454:130–137, 2014.

[2] Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving
gaussian elimination. Mathematics of Computation, 22:565–578, 1968.

[3] Richard E. Blahut. Algebraic Codes for Data Transmission. Cambridge
University Press, 2003.

[4] Adam W. Bojanczyk, Richard P. Brent, Frank R. de Hoog, and Douglas R.
Sweet. On the stability of the Bareiss and related Toeplitz factorization
algorithms. SIAM Journal on Matrix Analysis and Applications, 16(1):40–
57, 1995.

14

[5] Noam D. Elkies. On finite sequences satisfying linear recursions. New York

J. Math, 8:85–97, 2002.

[6] Zhicheng Gao and Daniel Panario. Degree distribution of the greatest
common divisor of polynomials over Fq. Random Structures & Algorithms,
29(1):26–37, 2006.

[7] Mario Garćıa-Armas, Sudhir R. Ghorpade and Samrith Ram. Relatively
prime polynomials and nonsingular Hankel matrices over finite fields. Jour-

nal of Combinatorial Theory, Series A, 118(3):819–828, 2011.

[8] Solomon W. Golomb. Shift Register Sequences. Aegean Park Press, Laguna
Hills, CA, USA, 1981.

[9] Solomon W. Golomb and Guang Gong. Signal Design for Good Correla-

tion: For Wireless Communication, Cryptography, and Radar. Cambridge
University Press, 2005.

[10] Peter Henrici. The quotient-difference algorithm. National Bureau Stan-

dards Applied Mathematics Series 49, 23–46, Washington, D. C., 1958.

[11] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, USA, 2nd edition, 2012.

[12] Brian A. LaMacchia and Andrew M. Odlyzko. Solving large sparse linear
systems over finite fields. In Alfred J. Menezes and Scott A. Vanstone,
editors, Advances in Cryptology-CRYPTO’ 90, pages 109–133, Berlin, Hei-
delberg, 1991. Springer Berlin Heidelberg.

[13] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University
Press, 1997.

[14] Gary L. Mullen and Daniel Panario. Handbook of Finite Fields. Chapman
& Hall/CRC, 1st edition, 2013.

[15] Bruce R. Musicus. Levinson and Fast Choleski Algorithms for Toeplitz and
Almost Toeplitz Matrices. Technical Report No. 538, Research Laboratory
of Electronics, Massachusetts Institute of Technology, 1998

[16] Isabelle Raemy. Superregular Hankel matrices over finite fields: An up-
per bound of the matrix size and a construction algorithm. MSc Thesis,
University of Zurich, 2015.

[17] Victor Shoup. NTL: A library for doing number theory.
https://www.shoup.net/ntl/. Last checked on March 3, 2020.

[18] Neil J. A. Sloane and Simon Plouffe. The Encyclopedia of Integer Sequences,
pages 15–17. San Diego, CA: Academic Press, 1995.

15

https://www.shoup.net/ntl/

[19] Eric W. Weisstein. Quotient-different table.
http://mathworld.wolfram.com/Quotient-DifferenceTable.html.
Last checked on March 3, 2020.

Appendix: Run times and distribution of counts

In order to compare in practice the running times between the trivial method
and our new method, we generate sequences of length n that we linearly filled.
In order to compute determinants of large Hankel matrices whenever necessary,
we do not use the Levinson-Durbin algorithm [4], [15] that can be adapted to
Hankel matrices instead of Toeplitz matrices. We created an extremely fast
C/C++ low-level module to compute determinants over F2 in order to do not
rely on any external libraries. Our module to compute determinants over F2 is
quite faster than NTL; it however only applies to binary matrices. We recall
that one of our future goals is to avoid such computation of determinants of
large matrices, and only use local information. We look at typical worst-case
instances when the linear subsequence is “buried” between two long random
sequences serving as a prefix and a postfix. The prefix random string together
with the generator vector are used to built the linear subsequence in the middle.
The prefix random string must be at least as long as the length of the generating
vector to be used as initial data. We also consider typical easy-case instances
when there is no random postfix sequence and when the length of the random
prefix sequence is the same as the generating vector.

For our accelerated dynamic algorithm, we give the distribution of counts of
the number of times, with respect to the number of entries in the table, that
we branch to Proposition 1, Theorems 1 or 2, Conjecture 1 or to an explicit
computation (where Levinson-Durbin could be used for instance). The time to
verify that the tables obtained from the trivial and our accelerated methods
coincide is not taken into account; we must check this because at this time
we cannot prove the validity of Conjecture 1 and/or further enhanced it. We
also parallelize both the naive and accelerated algorithms. We notice that our
accelerated algorithm on a single core is faster than the trivial algorithm on 160
cores for instance as shown here in the following tables. For n = 214 = 16384,
the time to run the trivial algorithm is prohibitive and we did not run the
trivial algorithm for length n = 214. The meanings of the abbreviations in the
following tables are: Tri. S.T. for trivial algorithm single threaded, Tri. M.T.

for trivial algorithm multi threaded, Acc. S.T. for accelerated algorithm single
threaded, and Acc. M.T. for accelerated algorithm multi threaded. Roughly
speaking, a thread is a core. All threads share a unique space in memory.

EXCERPT OF RUNNING TIMES FOR n = 4096 (in milliseconds)

Tri. S.T. Tri. M.T. Acc. S.T. Acc. M.T.

15931964.434875 793513.102411 209495.875914 79493.525290
15930582.584026 793131.331561 212010.715863 79784.405378

Continued on next page

16

http://mathworld.wolfram.com/Quotient-DifferenceTable.html

Tri. S.T. Tri. M.T. Acc. S.T. Acc. M.T.

15931070.671137 793029.664463 211231.649798 79538.533773

≈ 4h 30min ≈ 14min ≈ 4min ≈ 1min 33sec

EXCERPT OF RUNNING TIMES FOR n = 16384 (in milliseconds)

Acc. S.T. Acc. M.T.

95397251.744779 18823959.088013
92977447.400304 18820690.826587
93372757.004548 18817978.092718

≈ 26h 30min ≈ 5h 36min

The hardware specification for the computer we used is: Intel(R) Core(TM)
i7-8700 CPU @ 3.20Ghz, 160 cores, 1TB RAM.

We coded Algorithm 2 over F2, and a compile switch can be enable to avoid
using the library NTL or to use it. Our code is available at https://github.com/63EA13D5/.
For the worst-case instances, we generate the sequences using the following pa-
rameters:

1. Elements indexed from 0 to 7n/16 inclusively are generated randomly.

2. Elements indexed from 7n/16 + 1 to 9n/16 inclusively are linearly filled
using a non-trivial generating vector of length d = n/8. The generating
vector is randomly created and the rightmost coordinate is set to the unit
element in base field.

3. Elements indexed from 9n/16 to n inclusively are generated randomly.

The ratio of the number of entries in the big square over the number of entries for
the table of a given instance is about 1/16 up to a few decimals. For each value
of n, a sample of sequences is used to estimate the running time by evaluating
the averages over the sample, one average for the trivial and one average for
our method. For comparison, each method is applied to a sequence from the
sample. The ratios of the averages of the new method by the trivial are given.
We generate a sample of 1000 linearly filled vectors as described above for each
value of n. Zero counts are not shown in the tables.

Table 3: Time complexity and distribution of counts–hard instances.

Sample size 10140
Sequence length 4096
Generating vector length 256
Subsequence leftmost index 1792
Subsequence rightmost index 2304
Number of entries 4192256

Continued on next page

17

https://github.com/63EA13D5/

Average time for accelerated method (ms) 482211.336405 (i)
Average time for trivial method (ms) 39627789.122209 (ii)
Ratio i/ii 0.012169

Average counts NSEW 1720642.408481
Average counts square filling 925814.212032
Average counts direct 60875.169231

Average counts 2 × 2 grid 467181.981164
Average counts 3 × 3 grid 382111.856114
Average counts 4 × 4 grid 265305.747436
Average counts 5 × 5 grid 169767.046746
Average counts 6 × 6 grid 94158.297732
Average counts 7 × 7 grid 51134.827416

Average counts 2-cross 3772.531657 Average counts 3-cross 2480.830473
Average counts 4-cross 1473.981558 Average counts 5-cross 821.684813
Average counts 6-cross 4415.502071 Average counts 7-cross 4449.331460
Average counts 8-cross 16683.110947 Average counts 9-cross 9334.250197
Average counts 10-cross 5165.383136 Average counts 11-cross 2828.874063
Average counts 12-cross 1536.936785 Average counts 13-cross 828.868540
Average counts 14-cross 444.807101 Average counts 15-cross 237.420710
Average counts 16-cross 125.906312 Average counts 17-cross 67.308679
Average counts 18-cross 35.672189 Average counts 19-cross 18.771893
Average counts 20-cross 9.915779 Average counts 21-cross 5.115089
Average counts 22-cross 2.713708 Average counts 23-cross 1.373570
Average counts 24-cross 0.696746 Average counts 25-cross 0.388955
Average counts 26-cross 0.246154 Average counts 27-cross 0.098422
Average counts 28-cross 0.054734 Average counts 29-cross 0.043590
Average counts 30-cross 0.020809 Average counts 31-cross 0.009369
Average counts 32-cross 0.006312 Average counts 256-cross 21.695464
Average counts 257-cross 53.271203 Average counts 258-cross 70.017061
Average counts 259-cross 74.697732 Average counts 260-cross 67.246943
Average counts 261-cross 56.079487 Average counts 262-cross 45.345661
Average counts 263-cross 35.773866 Average counts 264-cross 26.859369
Average counts 265-cross 20.313807 Average counts 266-cross 14.738166
Average counts 267-cross 9.678205 Average counts 268-cross 7.546055
Average counts 269-cross 5.817850 Average counts 270-cross 3.680079
Average counts 271-cross 2.569625 Average counts 272-cross 1.961440
Average counts 273-cross 1.428895 Average counts 274-cross 1.082840
Average counts 275-cross 0.923471 Average counts 276-cross 0.490335
Average counts 277-cross 0.383432 Average counts 278-cross 0.439250
Average counts 279-cross 0.247929 Average counts 280-cross 0.082840
Average counts 281-cross 0.027811 Average counts 282-cross 0.027811
Average counts 285-cross 0.028205 Average counts 286-cross 0.028205
Average counts 287-cross 0.028402 Average counts 288-cross 0.028402
Average counts 293-cross 0.028994 Average counts 294-cross 0.028994

Sum over all average counts 4192256

Table 4: Time complexity and distribution of counts–easy instances

Sample size 10140
Sequence length 4096

Continued on next page

18

Generating vector length 256
Subsequence leftmost index 256
Subsequence rightmost index 4096
Number of entries 4192256

Average time for accelerated method (ms) 4331.896007 (i)
Average time for trivial method (ms) 25765730.530170 (ii)
Ratio i/ii 0.000168

Average counts NSEW 407852.065385
Average counts square filling 3419936.066568
Average counts direct 19444.707988

Average counts 2 × 2 grid 106227.368146
Average counts 3 × 3 grid 86949.429093
Average counts 4 × 4 grid 60390.460256
Average counts 5 × 5 grid 38652.743195
Average counts 6 × 6 grid 21438.953156
Average counts 7 × 7 grid 11646.030572

Average counts 2-cross 3772.586193 Average counts 3-cross 2479.999310
Average counts 4-cross 1473.537081 Average counts 5-cross 821.756805
Average counts 6-cross 1341.515483 Average counts 7-cross 1185.020414
Average counts 8-cross 3878.167554 Average counts 9-cross 2161.438363
Average counts 10-cross 1191.903748 Average counts 11-cross 651.711736
Average counts 12-cross 351.648225 Average counts 13-cross 189.478107
Average counts 14-cross 102.336391 Average counts 15-cross 54.392998
Average counts 16-cross 28.796746 Average counts 17-cross 15.180178
Average counts 18-cross 8.078008 Average counts 19-cross 4.166469
Average counts 20-cross 2.130868 Average counts 21-cross 1.140039
Average counts 22-cross 0.562821 Average counts 23-cross 0.254734
Average counts 24-cross 0.159073 Average counts 25-cross 0.104832
Average counts 26-cross 0.051972 Average counts 27-cross 0.035207
Average counts 28-cross 0.019428 Average counts 29-cross 0.002860
Average counts 1792-cross 0.645759 Average counts 1793-cross 0.501775
Average counts 1794-cross 0.350099 Average counts 1795-cross 0.212623
Average counts 1796-cross 0.121893 Average counts 1797-cross 0.073373
Average counts 1798-cross 0.039645 Average counts 1799-cross 0.022091
Average counts 1800-cross 0.015385 Average counts 1801-cross 0.007298
Average counts 1802-cross 0.005128 Average counts 1803-cross 0.001578
Average counts 1804-cross 0.002564 Average counts 1805-cross 0.000394
Average counts 1806-cross 0.000197 Average counts 1812-cross 0.000197

Sum over all average counts 4192256

We observe that we are about 83 times faster on typical hard instances and
about 5947 times faster on easy ones. In practice, to detect linearity or to solve
backward for the generating vector, we only need to stop at the first level that
contains a long run of zeros.

19

	1 Notation, facts and definitions
	2 Relations among Hankel determinants
	3 Algorithm to compute determinants of Hankel matrices over finite fields
	4 Illustrative visual examples
	5 Conclusion and further work

