Skip to main content

Stepwise-Refined Interval for Deep Learning to Process Sensor-Cloud Data with Noises

  • Conference paper
  • First Online:
Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12383))

  • 940 Accesses

Abstract

Predicting behaviors of interest in sensor cloud data has been a challenging issue due to the interference of the tremendous background noises. In this paper, a large number of noisy gravitational wave data detected by the sensor array on the laser interferometer gravitational wave observatory (LIGO) measurement arm is taken as a case study, and a model is established to predict the merging time of the two neutron star collision in real-time. After injecting gravitational wave signals with noise data, combined with the current popular deep learning techniques, we first predict the probability value of the merger event within an acceptable interval, then gradually narrow the interval down, and finally make a prediction of a small interval. Our results show that the stepwise-refined interval method has a faster speed without reducing accuracy. The average absolute error of the merge time on the test set is as low as 0.003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, T., et al.: A comprehensive trustworthy data collection approach in sensor-cloud system. IEEE Trans. Big Data, 1 (2018)

    Google Scholar 

  2. Wang, T., Luo, H., Jia, W., Liu, A., Xie, M.: MTES: an intelligent trust evaluation scheme in sensor-cloud-enabled industrial internet of things. IEEE Trans. Ind. Inf. 16(3), 2054–2062 (2019)

    Article  Google Scholar 

  3. George, D., Huerta, E.A.: Deep neural networks to enable real-time multimessenger astrophysics. Phys. Rev. D 97(4), 044039 (2018)

    Article  Google Scholar 

  4. George, D., Shen, H., Huerta, E.A.: Deep transfer learning: a new deep learning glitch classification method for advanced LIGO. ArXiv:1706.07446 (2017)

  5. George, D., Huerta, E.A.: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data. Phys. Lett. B 778, 64–70 (2018)

    Article  Google Scholar 

  6. Shen, H., George, D., Huerta, E., et al.: Glitch classification and clustering for LIGO with deep transfer learning. APS L01–027, 2018 (2018)

    Google Scholar 

  7. Shen, H., George, D., Huerta, E.A., Zhao, Z: Denoising gravitational waves using deep learning with recurrent denoising autoencoders. ArXiv:1711.09919 (2017)

  8. Li, X., Yu, W., Fan, X.: A method of detecting gravitational wave based on time-frequency analysis and convolutional neural networks. ArXiv:1712.00356 (2017)

  9. Hong, J., Chen, X.: Piezoelectric ceramics voice recognition system for vocal cord vibrations. Microcontrollers Embed. Syst. Appl. 20(7), 56–59,64 (2020)

    Google Scholar 

  10. Wang, Z., Xu, B.: Application of a hybrid filter method based on median filter and wavelet transform for propellant monitoring. J. Naval Aviat. Eng. Coll. 35(2), 211–216 (2020)

    Google Scholar 

  11. Wang, T., Ke, H., Zheng, X., Wang, K., Sangaiah, A.K., Liu, A.: Big data cleaning based on mobile edge computing in industrial sensor-cloud. IEEE Trans. Ind. Inf. 16(2), 1321–1329 (2019)

    Google Scholar 

  12. Usman, S.A., et al.: The PyCBC search for gravitational waves from compact binary coalescence. Class. Quantum Gravity 33(21), 215004 (2016)

    Article  Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  14. Fan, X.L., Li, J., Li, X., Zhong, Y.H., Cao, J.W.: Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors. Sci. China Phys. Mech. Astron. 62(6), 1–8 (2019). https://doi.org/10.1007/s11433-018-9321-7

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ArXiv:1412.6980 (2014)

  16. Woo, S., Park, J., Lee, J.-Y., So Kweon, I.: Cbam: convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  17. Cutler, C., Flanagan, E.E.: Gravitational waves from merging compact binaries: how accurately can one extract the binary’s parameters from the inspiral waveform? Phys. Rev. D 49(6), 2658 (1994)

    Google Scholar 

  18. Jaranowski, P., Krolak, A.: Data analysis of gravitational-wave signals from spinning neutron stars: the signal and its detection. Phys. Rev. D 58(6), 063001 (1998)

    Article  Google Scholar 

  19. Schutz, B.F.: Networks of gravitational wave detectors and three figures of merit. Class. Quantum Gravity 28(12), 125023 (2011)

    Article  Google Scholar 

  20. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Networks 61, 85–117 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feichou Kou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kou, F., Zhang, F. (2021). Stepwise-Refined Interval for Deep Learning to Process Sensor-Cloud Data with Noises. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2020. Lecture Notes in Computer Science(), vol 12383. Springer, Cham. https://doi.org/10.1007/978-3-030-68884-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68884-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68883-7

  • Online ISBN: 978-3-030-68884-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics