Skip to main content

Heterogeneous Security Events Prioritization Using Auto-encoders

  • Conference paper
  • First Online:
Risks and Security of Internet and Systems (CRiSIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12528))

Included in the following conference series:

Abstract

In a large monitored information system, analysts are confronted with a huge number of heterogeneous events or alerts produced by audit mechanisms or Intrusion Detection Systems. Even though they can use SIEM software to collect and analyse these eventsĀ (In this paper we call events all events or alerts produced by the monitoring processes), detecting previously unknown threats is tedious. Event prioritization tools can help the analyst focus on potentially anomalous events. To compute a measure of priority among events, we propose in this paper to define the notion of an anomaly score for each attribute of the analyzed events and a method for regrouping events in clusters to reduce the number of alerts the analysts have to qualify. The anomaly score is computed using neural networks (i.e., auto-encoders) trained on a normal dataset of events, and then used to provide the analyst with the information of the difference between normal learned events and the events actually produced by the monitoring system. Additionally, the auto-encoders also provide a way to regroup similar events via clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Attributes are the fields of an event. Connection duration, source IP address, number of bytes received are examples of attributes for a network event.

References

  1. Akoglu, L., Tong, H., Vreeken, J., Faloutsos, C.: Fast and reliable anomaly detection in categorical data. In: Proceedings of the 21st ACM international conference on Information and Knowledge Management, pp. 415ā€“424. ACM (2012)

    Google ScholarĀ 

  2. Bellman, R.E., Dreyfus, S.E.: Applied Dynamic Programming. Princeton University Press, Princeton (2015)

    MATHĀ  Google ScholarĀ 

  3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93ā€“104 (2000)

    Google ScholarĀ 

  4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1ā€“22 (1977)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. Dilokthanakul, N., et al.: Deep unsupervised clustering with Gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648 (2016)

  7. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proc. Volumes 46(20), 12ā€“17 (2013)

    ArticleĀ  Google ScholarĀ 

  8. Du, M., Li, F., Zheng, G., Srikumar, V.: Deeplog: anomaly detection and diagnosis from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1285ā€“1298. ACM (2017)

    Google ScholarĀ 

  9. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96, 226ā€“231 (1996)

    Google ScholarĀ 

  10. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170ā€“180. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46145-0_17

    ChapterĀ  Google ScholarĀ 

  11. He, Z., Xu, X., Huang, J.Z., Deng, S.: A frequent pattern discovery method for outlier detection. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004. LNCS, vol. 3129, pp. 726ā€“732. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27772-9_80

    ChapterĀ  Google ScholarĀ 

  12. Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3), 215ā€“236 (1996)

    ArticleĀ  Google ScholarĀ 

  13. Kriegel, H.P., S hubert, M., Zimek, A.: Angle-based outlier detection in high-dimensional data. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 08, p. 444. ACM Press (2008). https://doi.org/10.1145/1401890.1401946

  14. Lanoe, D., Hurfin, M., Totel, E.: A scalable and efficient correlation engine to detect multi-step attacks in distributed systems. In: 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS), pp. 31ā€“40, October 2018. https://doi.org/10.1109/SRDS.2018.00014

  15. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413ā€“422. IEEE (2008)

    Google ScholarĀ 

  16. Liu, F., Wen, Y., Zhang, D., Jiang, X., Xing, X., Meng, D.: Log2vec: a heterogeneous graph embedding based approach for detecting cyber threats within enterprise. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1777ā€“1794 (2019)

    Google ScholarĀ 

  17. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013)

    Google ScholarĀ 

  18. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv preprint arXiv:1802.09089 (2018)

  19. Pang, G., Ting, K.M., Albrecht, D.: Lesinn: detecting anomalies by identifying least similar nearest neighbours. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 623ā€“630. IEEE, November 2015. https://doi.org/10.1109/ICDMW.2015.62

  20. Pascoal, C., De Oliveira, M.R., Valadas, R., Filzmoser, P., Salvador, P., Pacheco, A.: Robust feature selection and robust pca for internet traffic anomaly detection. In: 2012 Proceedings IEEE Infocom, pp. 1755ā€“1763. IEEE (2012)

    Google ScholarĀ 

  21. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput. Netw. 31(23ā€“24), 2435ā€“2463 (1999)

    ArticleĀ  Google ScholarĀ 

  22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Elsevier, Amsterdam (2014)

    MATHĀ  Google ScholarĀ 

  23. Schƶlkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, pp. 582ā€“588 (2000)

    Google ScholarĀ 

  24. Shen, Y., Stringhini, G.: Attack2vec: leveraging temporal word embeddings to understand the evolution of cyberattacks. In: 28th \(\{\)USENIX\(\}\) Security Symposium Security 2019, pp. 905ā€“921 (2019)

    Google ScholarĀ 

  25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998ā€“6008 (2017)

    Google ScholarĀ 

  26. Veeramachaneni, K., Arnaldo, I., Korrapati, V., Bassias, C., Li, K.: Ai\({\hat{\,}}\) 2: training a big data machine to defend. In: 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), pp. 49ā€“54. IEEE (2016)

    Google ScholarĀ 

  27. Wong, W.K., Moore, A.W., Cooper, G.F., Wagner, M.M.: Bayesian network anomaly pattern detection for disease outbreaks. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 808ā€“815 (2003)

    Google ScholarĀ 

  28. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665ā€“674. ACM (2017)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dey, A., Totel, E., Navers, S. (2021). Heterogeneous Security Events Prioritization Using Auto-encoders. In: Garcia-Alfaro, J., Leneutre, J., Cuppens, N., Yaich, R. (eds) Risks and Security of Internet and Systems. CRiSIS 2020. Lecture Notes in Computer Science(), vol 12528. Springer, Cham. https://doi.org/10.1007/978-3-030-68887-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68887-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68886-8

  • Online ISBN: 978-3-030-68887-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics