Skip to main content

Secret Sharing with Statistical Privacy and Computational Relaxed Non-malleability

  • Conference paper
  • First Online:
  • 529 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12593))

Abstract

Goyal and Kumar (STOC ’18, CRYPTO ’18) initiate the study of non-malleability for secret sharing and proposed the definition of information-theoretical non-malleability for secret sharing. Subsequently, Brian, Faonio, and Venturi (CRYPTO ’19, TCC ’19) proposed computational variants of non-malleability for secret sharing and showed that by focusing on computational non-malleability, it is possible to construct more efficient schemes compared to the existing ones. However, their schemes have a drawback that they do not satisfy statistical privacy.

In this paper, we propose a new definition of computational non-malleability for secret sharing in the public parameter model. Although our definition is relaxed compared to the one proposed by Brian et al., it captures a strong security notion called non-malleability against overlap-joint tampering. Then, we show how to transform any secret sharing scheme into the one satisfying our computational non-malleability with small efficiency overhead. This transformation has a nice property that it preserves the statistical privacy of the underlying secret sharing scheme. Thus, through our transformation, we can obtain efficient secret sharing schemes satisfying computational non-malleability and statistical privacy. We achieve this transformation using lossy encryption which satisfies IND-CCA security in the injective mode.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the definition of non-malleable commitment proposed by Crescenzo et al., see the Sect. 3.

  2. 2.

    In the definition of ordinary lossy encryption [BHY09], it is required to satisfy only IND-CPA security.

  3. 3.

    Intuitively, the obvious attack is the tampering performed by the adversary that once reconstructs the original message.

References

  1. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret sharing schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_18

    Chapter  Google Scholar 

  2. Brian, G., Faonio, A., Obremski, M., Simkin, M., Venturi, D.: Non-malleable secret sharing against bounded joint-tampering attacks in the plain model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 127–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_5

    Chapter  Google Scholar 

  3. Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret sharing for general access structures. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 211–232. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_8

    Chapter  Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, 2–4 May, pp. 1–10. ACM Press (1988)

    Google Scholar 

  5. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_1

    Chapter  Google Scholar 

  6. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979 National Computer Conference, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  7. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 593–622. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_20

    Chapter  Google Scholar 

  8. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, 2–4 May, pp. 11–19. ACM Press (1988)

    Google Scholar 

  9. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_4

    Chapter  Google Scholar 

  10. Chattopadhyay, E., Li, X.: Non-malleable codes, extractors and secret sharing for interleaved tampering and composition of tampering. Cryptology ePrint Archive, Report 2018/1069 (2018)

    Google Scholar 

  11. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.-C. (ed.) ICS 2010: 1st Innovations in Computer Science, Tsinghua University, Beijing, China, 5–7 January, pp. 434–452. Tsinghua University Press (2010)

    Google Scholar 

  12. Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting: adaptive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 448–479. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_16

    Chapter  MATH  Google Scholar 

  13. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th Annual ACM Symposium on Theory of Computing, Los Angeles, CA, USA, 25–29 June, pp. 685–698. ACM Press (2018)

    Google Scholar 

  14. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 501–530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_17

    Chapter  Google Scholar 

  15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, New York City, NY, USA, 25–27 May, pp. 218–229. ACM Press (1987)

    Google Scholar 

  16. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 25, p. 200 (2018)

    Google Scholar 

  17. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Non-malleable secret sharing against affine tampering. CoRR, abs/1902.06195 (2019)

    Google Scholar 

  18. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  19. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_17

    Chapter  Google Scholar 

Download references

Acknowledgments

A part of this work was supported by NTT Secure Platform Laboratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAKENHI JP16H01705, JP17H01695, JP19J22363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasuku Narita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narita, T., Kitagawa, F., Yoshida, Y., Tanaka, K. (2021). Secret Sharing with Statistical Privacy and Computational Relaxed Non-malleability. In: Hong, D. (eds) Information Security and Cryptology – ICISC 2020. ICISC 2020. Lecture Notes in Computer Science(), vol 12593. Springer, Cham. https://doi.org/10.1007/978-3-030-68890-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68890-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68889-9

  • Online ISBN: 978-3-030-68890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics