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Abstract. Improving neural machine translation (NMT) models using
the back-translations of the monolingual target data (synthetic parallel
data) is currently the state-of-the-art approach for training improved
translation systems. The quality of the backward system – which is
trained on the available parallel data and used for the back-translation
– has been shown in many studies to affect the performance of the fi-
nal NMT model. In low resource conditions, the available parallel data
is usually not enough to train a backward model that can produce the
qualitative synthetic data needed to train a standard translation model.
This work proposes a self-training strategy where the output of the back-
ward model is used to improve the model itself through the forward
translation technique. The technique was shown to improve baseline low
resource IWSLT’14 English-German and IWSLT’15 English-Vietnamese
backward translation models by 11.06 and 1.5 BLEUs respectively. The
synthetic data generated by the improved English-German backward
model was used to train a forward model which out-performed another
forward model trained using standard back-translation by 2.7 BLEU.

Keywords: Forward Translation · Self-Training · Self-Learning · Back-
Translation · Neural Machine Translation

1 Introduction

The neural machine translation (NMT) [1,2,3] is currently the simplest and
yet the state-of-the-art approach for training improved translation systems [4,5].
They out-perform other statistical machine translation approaches if there exists
a large amount of parallel data between the languages [6,7]. Given the “right”
amount of qualitative parallel data only, the models can learn the probability
of mapping sentences in the source language to their equivalents in another lan-
guage – the target language [8]. This “right” amount of qualitative parallel data is
usually very large and, therefore, expensive to compile because it requires manual
translation. The absence of large amounts of high-quality parallel data in many
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languages has led to various proposals for leveraging the abundant monolingual
data that exists in either or both of the languages. These approaches include
the self-training [9], forward translation [10], back-translation [4,11,12,13], dual
learning [15] and transfer learning [7,16,17,18].

The back-translation has been used in current state-of-the-art neural machine
translation systems [4,19,20], outperforming other approaches in high resource
languages and improving performance in low resource conditions [4,21,22]. The
approach involves training a target-to-source (backward) model on the available
parallel data and using that model to generate synthetic translations of a large
number of monolingual sentences in the target language. The available authentic
parallel data is then mixed with the generated synthetic parallel data without
differentiating between the two [11] to train a final source-to-target (forward)
model. The quality of the forward translation model depends on the NMT ar-
chitecture used in building the models [11], the quality of the backward model
[21,23,24], the suitability of the synthetic data generation method used [4,25]
and the ratio of the authentic data to the synthetic data [26,27]. In low resource
NMT, the authentic parallel data available is not sufficient to train a backward
model that will generate qualitative synthetic data. Thus, various methods have
been proposed to improve the quality of the backward model despite the lack of
sufficient parallel data.

Hoang et al. [21] and Zhang et al. [23] used an iterative approach to enable the
forward model to generate synthetic data that will be used to improve the back-
ward model. Imamura et al. [12] suggest generating multiple synthetic sources
through sampling given a target sentence. Niu et al [22] trained a bilingual model
for both the backward and forward translations and they reported improvement
in low resource translations. Graca et al. [25] proposed that selecting the most
suitable synthetic data generation method will help reduce the inadequacies of
the backward model. Dabre et al. [17] and Kocmi and Bojar [18] proposed the
use of a high-resource parent language pair through transfer learning to improve
the backward model.

This work proposes the use of self-training – also referred within the doc-
ument as self-learning and forward translation – [28,10,9] approach to improve
the backward model. The output of the backward model – which is ideally used
with the authentic data to train the forward model in back-translation – is used
to improve the backward model itself. The self-training approach used is sim-
ilar to that in [28,10,9] where a synthetic target-side data is used to improve
the performance of the translation model instead of the synthetic source-side
data in back-translation. But instead of using the approach to enhance the final
model, we aim to enhance the backward model which then generates improved
synthetic data for enhancing the final model. We also simplify the approach by
removing the need for synthetic data quality estimation [9] or freezing of training
parameters [10].

The work is similar to the iterative back-translation of Hoang et al. [21] and
Zhang et al. [23]. The iterative back-translation requires the use of the mono-
lingual source and target data to improve the backward and forward models
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respectively. The backward model generates synthetic sources to improve the
forward model while the forward does the same for the backward model. This
process is repeated iteratively until the required quality of translations are ob-
tained. Instead, this work relies only on the monolingual target data to improve
both models. Whereas the approaches above perform iterative back-translation
to improve both models, our work uses forward translation (self-learning) to im-
prove the backward model and back-translation to improve the forward model.

It was shown by Specia and Shah [9] and Zhang and Zong [10] that using the
monolingual source – or the synthetic target – data will potentially reduce the
performance of the decoder. To mitigate this, Ueffing [28] and Specia and Shah
[9] used quality estimation [29] to determine the best-translated sentences to be
used to retraining, while Zhang and Zong [10] proposed freezing the parameters
of the decoder when training the model on the synthetic data. In this work,
we showed that the self-learning approach is capable of improving a translation
model even without synthetic data cleaning or freezing any learned parameters.
We hypothesize that the amount of parallel data used in retraining the model
is sufficient to improve the quality of the model if the model can differentiate
between and learn effectively from the synthetic and natural data.

1.1 Summary of Contributions

We make the following contributions in this paper:

– instead of requiring the source and target data for improving the backward
and forward models respectively, as in previous works, we investigated utiliz-
ing only the target-side monolingual data to improve both the backward and
forward models in back-translation. Whereas the monolingual target data is
used as the source data to improve the backward model (forward transla-
tion), we use the same data as the target data in the forward model training
(back-translation). The work investigates different approaches for using the
all of the synthetic data to improve the models.

– we showed that even without data cleaning and/or freezing learned param-
eters, self-training improves the backward model; and that a forward model
trained using the synthetic data generated from the improved backward
model performs better than a forward model trained using the standard
back-translation.

– we showed that when a model – backward or forward – can differentiate
between the authentic and synthetic data, it is able to utilize the quality in
the authentic data and also, efficiently benefits from the increase in quantity
resulted from adding the synthetic data.

– we showed that the technique improves baseline low resource IWSLT’14
English-German and IWSLT’15 English-Vietnamese backward NMT models
by 11.06 and 1.5 BLEUs respectively; and the synthetic data generated by
the improved English-German backward model was used to train a forward
model whose performance bettered that of a forward model trained using
the standard back-translation technique by 2.7 BLEU.
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2 Related Works

This section presents prior work on back-translation, forward translation and
self-training.

2.1 Back-Translation

The use of monolingual data of target and/or source language has been studied
extensively to improve the performance of translation models, especially in low
resource settings. Gulcehre et al [36] explored the infusion of language models
trained on monolingual data into the translation models. Currey et al. [37] and
Burlot and Yvon [24] proposed augmenting a copy or slightly modified copy of the
target data as source respectively. Sennrich et al. [38] and Zhang and Zong [10]
proposed the back-translation and forward translation approaches respectively
and He et al. [15] used both source and target-side monolingual data to improve
the translation models.

The back-translation approach has been shown to outperform other ap-
proaches in low and high resource languages [4,21]. The quality of the models
trained using back-translation depends on the quality of the backward model
[4,26,21,24,25,18,8]. In low resource NMT, the authentic parallel data available
is not sufficient to train a backward model that will generate qualitative synthetic
data. To improve the quality of the synthetic parallel data, Hoang et al. [21],
Zhang et al. [23] and Caswell et al. [13] proposed the iterative back-translation –
iteratively using the back-translations of the source and target data to improve
the backward and forward models respectively. Kocmi and Bojar [18] and Dabre
et al. [17] pre-trained a model using high resource languages and initialize the
training of the low resource languages with the learned pre-trained weights –
transfer learning. Niu et al. [22] trained a bilingual system based on Johnson et
al. [39] to do both forward and backward translations, eliminating the need for
separate backward model. They reported improvement in low resource NMT.

2.2 Forward Translation and Self-Training

Forward translation (reverse back-translation, self-training or self-learning) was
used to improve NMT [10] and other forms of statistical machine translation sys-
tems [28,9]. Instead of the target-side monolingual data, forward translation uses
the source-side monolingual data to improve the performance of a translation
model. The available authentic data is used to train a source-to-target model.
This model is then used to generate synthetic translations of the available (usu-
ally huge) source-side monolingual sentences. This data (synthetic target) is
paired with the source-side data to create the synthetic parallel dataset. The re-
sulting huge data is used to train a better source-to-target translation model. The
synthetic data might contain mistakes that will likely reduce the performance
of the models. Various works that used the forward translation (self-learning)
approach proposed the use of other techniques to mitigate the effects of the noise
present in the data, e.g. using quality estimation to automatically remove the
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sentences that are considered to be badly translated. Specia and Shah [9] utilized
an iterative approach to select the top n translations to retrain the generating
model. Automatic quality estimation was used to determine sentences that are
considered to be translated better than the others.

Ueffing [28] explained self-training as an approach that takes the output of
the machine translation model to improve the model itself. The work proposed
the translation of monolingual source data, estimating the quality of the trans-
lated sentences, discarding those sentences whose quality is below a set threshold
and subsequently training a new improved model on the mixed authentic and
synthetic bilingual data. Zhang and Zong [10] proposed the forward translation
(self-learning) to improve the encoder side of the NMT model. The authors sug-
gested that back-translation improved the decoder by training it authentic target
data and that when the NMT model is trained on authentic source data, the en-
coder will be improved. The use of synthetic data in back-translation may reduce
the performance of the encoder because it is trained on the synthetic data. When
using the synthetic target data in their approach, the authors tried to mitigate
this problem by freezing the parameters of the decoder for the synthetic data
during training.

3 Methodology

3.1 Neural Machine Translation (NMT)

This work is based on a unidirectional LSTM encoder-decoder architecture with
Luong attention [2]. This is a recurrent neural network RNMT architecture and
it is summarized below. Our approach can be applied to other architectures such
as the convolutional neural network NMT (CNMT) [30,31] and the Transformer
[3,32].

Neural Machine Translation (NMT) is based on a sequence-to-sequence encoder-
decoder system made of neural networks that models the conditional probability
of a source sentence to a target sentence [1,33,2]. The encoder converts the input
in the source language into a set of vectors while the decoder converts the set of
vectors into the target language, word by word, through an attention mechanism
– introduced to keep track of context in longer sentences [1]. The NMT model
produces the translated sentence by generating one target word at every time
step. Given the “right” amount of qualitative parallel data only, the NMT model
can learn the probability of mapping sentences in the source language to their
equivalents in another language – the target language – word by word [8].

Given an input sequence X = (x1, ..., xTx), the encoder – made up of a
bidirectional or unidirectional neural network with Long Short-Term Memory
(LSTM) [34] or gated recurrent units (GRU) [35] – computes the annotation
vector hj , which is a concatenation of the forward and backward hidden states
−→
hj and

←−
hj respectively. The decoder is made up of a recurrent neural network that

takes a recurrent hidden state si, the previously translated words (y1, ..., yi−1)
and a context vector ci to predict the probability of the next word yi as the
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𝑀𝑥←𝑦 

backward 
model 

authentic 
parallel data 

monolingual 
target data 

synthetic 
parallel data 

(a) train (b) translate 

(c) generate 

(d) re-train 

Fig. 1: Self-Learning for Improving the Backward Model: enabling the backward
model to learn from the target language monolingual data

weighted summation of the annotations hj . An alignment model – a single
layer feed-forward network which is learned jointly with the rest of the network
through back-propagation – which models the probability that yi is aligned to
xi is used to compute the weight of each annotation hj .

All of the parameters in the NMT model, θ, are optimized to maximize the
following conditional log-likelihood of the M sentence aligned bilingual samples

L(θ) =
1

M

M∑
m=1

Ty∑
i=1

log(p(ymi |ym<i, X
m, θ))

.

3.2 Overview of the Method

As shown in Algorithm 1, given a set of parallel data and monolingual target
sentences: DP = {(x(u), y(u))}Uu=1 and Y = {(y(v))}Vv=1 respectively, we used
the authentic parallel data: DP to train a target-to-source model, Mx←y. This
model – the backward model – is then used to translate the monolingual target
data, Y , to generate the synthetic parallel data: D′ = {(x(v), y(v))}Vv=1. The
resulting synthetic data is then used to improve the model either through fine-
tuning it on the synthetic data, standard forward translation, tagged forward
translation (similar to the tagged back-translation [13]) or through pre-training
and fine-tuning [40]. This technique is illustrated in Fig. 1.

Previous works that used self-training to improve machine translation models
(e.g. [9], [28]) proposed an extra step of data cleaning or freezing parameters (not
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ALGORITHM 1: SELF-TRAINING

Input: Parallel data DP = {(x(u), y(u))}Uu=1 and Monolingual

target data Y = {(y(v))}Vv=1

1: procedure SELF-TRAINING

2: Train backward model Mx←y on bilingual data DP

3: Let D′ = synthetic parallel corpora generated for Y using Mx←y;

4: Train improved backward model M+
x←y on bilingual data DP ∪D′;

5: end procedure

6: procedure BACK-TRANSLATION

7: Let D∗ = synthetic parallel corpora generated for Y using M+
x←y;

8: Train forward model Mx→y on bilingual data DP ∪D∗;

9: end procedure

Output: improved Mx←y and Mx→y models

updating the parameters of the decoder when training on the synthetic target
data) to achieve the required performance. Our approach does not require any
specialized approach of data cleaning or training regime. We showed that the
simple act of joining the synthetic and authentic data can improve the model. We
went further to show that when the backward model can differentiate between
the synthetic data and authentic data, the performance increases even further.
We investigated pre-training and fine-tuning, and tagging as methods that will
help the model differentiate between the data. Also, we used self-training in
this work only to enhance the backward model in the back-translation approach
rather than training a final translation model.

3.3 Data

In this work, we used the data from the IWSLT 2014 German-English shared
translation task [41]. For pre-processing, we used the data cleanup and train, dev
and test split in Ranzato et al. [42], resulting in 153,348, 6,970 and 6,750 parallel
sentences for training, development and testing respectively. For the second low
resource dataset, we used the pre-processed low resource English-Vietnamese
parallel data [2] of the IWSLT 2015 Translation task [43]. We then utilized
the 2012 and 2013 test sets for development and testing respectively. Table 1
shows the data statistics. We used 400,000 English monolingual sentences of
the pre-processed [2] WMT 2014 English-German translation task [44] for the
monolingual data. We learned byte pair encoding (BPE) [45] with 10,000 merge
operations on the training dataset, applied it on the train, development and test
datasets and, afterwards, build the vocabulary on the training dataset.
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Table 1: Data Statistics

data
train

dev test
sentences words (vocab)

IWSLT’14 En-De 153, 348
En De

6, 970 6, 750
2,837,240 (50,045) 2,688,387 (103,796)

IWSLT’15 En-Vi 133, 317
En Vi

1, 553 1, 268
2,706,255 (54,169) 3,311,508 (25,615)

WMT’14 En-De –
Monolingual English

400, 000 9,918,380 (266,640) - -

3.4 Set-up

We used the NMTSmallV1 configuration of the OpenNMT-tf [46], the Tensor-
Flow [47] implementation, a framework for training NMT models. The config-
uration is a 2-layer unidirectional LSTM encoder-decoder model with Luong
attention [2] with 512 hidden units and a vocabulary size of 50,000 for both
source and target languages. The optimizer we used is Adam [48], a batch size
of 64, a dropout probability of 0.3 and a static learning rate of 0.0002. The mod-
els are evaluated on the development set after every 5,000 training steps. For
evaluation, we used the bi-lingual evaluation understudy (BLEU) [14].

Training is stopped when the models reach a total of 200,000 training steps
or when there is no improvement of over 0.2 BLEU after the evaluation of four
consecutive training steps. We used this set-up to train all the models and unless
stated otherwise: (1) there was no extra training for any model after either of
the stopping criteria were met; (2) we average the last 8 checkpoints of every
model trained to obtain a better performance and; (3) we update the vocabulary
of every checkpoint with the that of the new training data before fine-tuning.

4 Experiments and Results

First, we train a backward model (En-De) – baseline – for 80,000 training steps,
achieving the best score of 10.03 BLEU after 65,000 training steps. Averaging
the last 8 checkpoints results in a better performance of 10.25 BLEU and we used
this average checkpoint as our backward model for generating the synthetic data.
The resulting parallel data is labelled as synth-A. We then used the authentic
parallel data and synth-A to train an improved backward model. Apart from the
standard forward translation (self-learning) technique of mixing the data and
training from the scratch, we followed other training strategies to enable the
model to differentiate between the authentic and synthetic parallel data. The
results obtained by using these various strategies are shown in Table 2.
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Table 2: Scores for best checkpoints and checkpoint averaging of backward mod-
els trained using different techniques.

self-training (this work)

baseline

[2,38]
backward ft tagged ft

pre-train &

fine-tune

best score

(training step)

10.03

(65k)

20.48

(150k)

20.72

(150k)

20.77

(115k)

average 10.25 20.98 21.02 20.35

4.1 Forward translation

We mixed the authentic parallel data and synth-A without differentiating be-
tween the two and trained the backward model from scratch. The model trained
for 180,000 steps before stopping. The best score obtained was more than double
the performance of baseline with an improvement of 10.45 BLEU. The averaged
checkpoint – backward ft – gained an improvement of 10.73 BLEU over baseline.
This huge improvement supports the hypothesis that even without data clean-
ing and/or freezing of decoder parameters, the model is able to learn from the
synthetic data generated by itself. After a few training steps, the performance
of backward ft started to improve significantly over baseline (see Fig. 2).

4.2 Tagged forward translation

To enable the backward model to differentiate between the two data, we ex-
perimented the ‘tagged forward translation’ – coined from the tagged back-
translation of [13]. While they used the ‘<BT>’ tag to indicate if a source was
synthetic, we instead utilized the ‘<SYN>’ tag to differentiate between authen-
tic and synthetic target sentences. We named the model that was trained using
this approach as tagged ft. Although the tagged approach outperforms the stan-
dard approach, the difference observed in the performances of the tagged ft and
backward ft models was not significant.

4.3 Pre-training and Fine-tuning

Following the work of Abdulmumin et al. [40], we trained the models using the
following approache: pre-training on the synthetic data and fine-tuning on the
authentic data. we We experimented mixing the authentic data and synth-A
to learn joint BPE and build a vocabulary of the mixed data. Afterwards, we
pre-trained the backward model on synth-A and fine-tuned it on the authentic
data. The performance of the average of the last 8 checkpoints was a little bit
lower (-0.87 BLEU) than that of the other strategies, but the best checkpoints
in the strategy outperformed the others. We realized that averaging the last 8
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Table 3: Improvements observed after re-training the backward model on the
synthetic target data for English Vietnamese machine translation.

self-training

baseline forward translation pre-training & fine-tuning

best score (training step) 24.78 (50k) 25.97 (105k) 26.22 (125k)

average 25.79 26.38 27.29

checkpoints hurts the performance because continuing to train the model af-
ter 145,000 training steps produced poor checkpoints (see Fig. 2). We, instead,
took the average of the previous 8 checkpoints starting from the checkpoint at
145,000 training steps. This resulted in an increased performance of the model
to 21.31 BLEU (+0.96), an increase of 0.1 BLEU over the previous approach.
This appears to have the best performance among the models trained so far.
We, therefore, used this model to generate synth-B – a synthetic parallel data
generated for the monolingual sentences.

4.4 English Vietnamese (En-Vi)

We used the En-Vi dataset to test the results obtained on the En-De dataset.
A backward model was trained using the English-Vietnamese parallel data for
55,000 training steps. The model (En-Vi) achieved a BLEU score of 24.78 after
50,000 training steps. An average of the last 8 checkpoints resulted in an im-
proved performance of 25.79 BLEU and the checkpoint was labelled envi baseline.
The model, envi baseline, was used to translate the monolingual English data to
generate the synthetic parallel data – synth-C. The authentic data was mixed
with synth-C to train a backward model – envi backward – from the scratch.
The model gained a +1.19 BLEU (see Table 3) on the best checkpoint and 0.59
BLEU on the average checkpoint over envi baseline. The results are shown in
Table 3. We then used the pre-training and fine-tuning approach to train the
backward model. Even during the pre-train stage of this approach, the average
checkpoint achieved a performance that is close to that of envi baseline – a score
of 24.82 (-0.97) BLEU. This supports the claim by [4] that training a translation
model on the synthetic parallel data only can reach a performance similar to the
model that is trained on authentic data only.

We observed that although the quality of the synthetic data determines the
feasibility of the claim, it is true for either synthetic target or source data. The
performance of the backward model that was pre-trained on the synthetic data
generated by baseline (Section 4) – which was in itself poor (10.25 BLEU) –
was significantly less than the that of the baseline (-2.83 BLEU). After fine-
tuning, the performance of the model improved to 27.29 (+1.5). Although some
gain in performance was realized, the difference was not as significant as it was
observed on the En-De dataset – +1.5 on En-Vi compared to +9.1 on En-De.
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Table 4: Forward models (De-En) trained using different quality of synthetic
data.

baseline

forward

model [2]

baseline backward model [38]

(10.25 BLEU)

self-trained backward model

(this work; 21.22 BLEU)

standard back-

translation

pre-training &

fine-tuning

standard back-

translation

pre-training &

fine-tuning

best score

(training step)

20.30

(75k)

25.11

(150k)

25.32

(115k)

27.41

(110k)

28.38

(135k)

average 20.95 25.87 26.03 27.87 28.73

This may have been because the backward model, envi baseline, was already
good compared to baseline.

4.5 Back-Translation

It is expected, as shown in many studies (e.g. [4], [27]), that a better synthetic
data generated using a good backward model will result in an improved forward
model. We used the outputs of the backward models – synth-A and synth-B –
to train final forward models. We expected the quality of synth-B to be better
since it was generated using the best backward model among those trained in
the experiments above. Both of the models trained using the standard back-
translation and the pre-training and fine-tuning approaches performed better
than the models trained using the same approaches but with synth-A (see Fig.
3).

Table 4 shows the performance of the models trained: without synthetic
data; with synth-A and; with synth-B. The best model was obtained through
pre-training and fine-tuning using authentic data and synth-B. The model out-
performed the baseline forward model by a BLEU score of 7.78 (28.73 BLEU).
Although using synth-A improved the performance of the forward model over
the baseline (+4.92 and +5.08 BLEUs using standard back-translation and pre-
training and fine-tuning respectively), the effect of the backward model self-
training ensured that the quality of synth-B was superior and the model trained
using this data improved the forward model further by over +2 BLEU.

5 Discussion

Neural machine translation systems suffer when trained on scanty data - low
resource languages. Back-translation is an approach that was introduced to im-
prove the performance of these and other category of languages. But various
studies have shown that in low resource set-ups, the performance require other
special approaches to reach an acceptable standard for translation quality. This
work, therefore, proposes a new method of using the target-side monolingual
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trained using different quality of syn-
thetic data. KEY: A = baseline, B =
back-translation, C = pre-train & fine-
tune, D = improved back-translation,
E = improved pre-train & fine-tune

data more effectively to improve the performance of the back-translation ap-
proach. Whereas the back-translation was used to specifically improve the for-
ward model, we used the self-training approach through forward translation to
improve, also, the performance of the backward model. The method performed
very well on low resource English-German and English-Vietnamese languages
and can be applied to any other low resource neural machine translation. The
method can be investigated also in high resource languages.

We investigated various approaches such as the forward translation, tagged
forward translation and various pre-training and fine-tuning strategies with the
later two implemented to enable the model differentiate between synthetic and
authentic parallel data during training. We observed that the proposed method
out-performed the backward model in standard back-translation. It was claimed
in [9] and [10] that the model’s performance may be affected when using self-
training because of the noise in the synthetic data. Instead, we found that pro-
viding a means for the model to differentiate between synthetic and authentic
parallel data is just sufficient for the self-training method to perform as desired.
Even though the self-training is by itself successful at improving the model,
using tags or pre-training and fine-tuning have shown to improve the model’s
performance.

The work was evaluated on the low resource IWSLT 14 English-German
translation. We also used the IWSLT 15 English-Vietnamese parallel data to
confirm the positive results obtained using the approach. In Table 5, we showed
a sample translation from English to German. Our improved model was able
to produce exact translation to most of the referenced translation: ”... wir 3
milliarden stunden pro woche mit online-spielen” and the other part where the
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Table 5: A German-to-English translation example in the IWSLT-DE 14 test
set.

Source und es funktionierte . wieder hatten wir etwas magisches geschaf-
fen . und die wirkung im publikum war dieselbe . allerdings
haben wir mit dem film schon ein bisschen mehr geld eingespielt

Reference and it did , and we created magic again , and we had the same
result with an audience – although we did make a little more
money on that one.

Baseline and it worked . again . we had something magical , and the effect
in the audience was the same thing , but we had a little more
compound with a little more money.

Standard BT and it worked . again , we created something magical , and the
effect in the audience was the same , but we had a little bit more
money on the film.

Pre-train & Fine-
tune

and it worked . again , we created something magical , and the
effect in the audience was the same thing , but we had a little
bit more money in the movie.

Improved Standard
BT

and it worked . again , we created something magical , and the
effect in the audience was the same . but we have a little bit
more money.

Improved Pre-train
& Fine-tune

and it worked . again , we had created something magical , and
the effect in the audience was the same . but we did a little bit
more with the movie.

translation generated was different, the meaning was the same: ”derzeit verbrin-
gen” ’vs’ ”im moment geben”. The self-trained model was also able to generate
exact translation to most of the referenced text but the model could only specify
the adverb ”now” instead of the referenced ”right now”. The improved model
(trained using the best pre-train and fine-tune approach) generated ”at the mo-
ment” which was a better equivalent to the next best translation system. Though
the rest of the models could not perform better than the two discussed, the qual-
ity superiority of our approach can be seen on the models trained. For the forward
model, the effects of the improved models were observed in their performances.
In Table 6, we also translated a given German source text to English. The per-
formances of the last two models (trained on the synthetic sentences generated
by the backward model improved using our approach), and especially the last
model, were superior than the rest of the other models.

The pre-training and fine-tuning approach has shown to be the better ap-
proach when applying the method we proposed in this work. Unlike in [40], we
investigated different approaches that will suit better for our approach. We found
that pre-training first on the synthetic data and thereafter fine-tuning the model
on the authentic data is the best strategy. Fine-tuning on the synthetic data was
found to hurt the model. This can be attributed to the lack of quality in the
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synthetic data used for fine-tuning compared to the authentic data used during
pre-training, supporting the same claim in the work of [40] that fine-tuning on
the synthetic data does not improve performance, it only hurts it.

6 Conclusion & Future work

To the best of our knowledge, this is the first work that investigated an all-
round utilization of the synthetic data to improve neural machine translation
especially on low resource languages. These category of languages lag their high
resource counterparts even if the same methods for improving their performance
are applied. The back-translation has been shown to improve translation perfor-
mance across board but in low resource languages, the performance is still less
than desirable. We applied joint backward and forward translation to utilize the
target-side monolingual data in improving the performance of neural machine
translation systems in low resource languages. Experimental results obtained on
English-German and English-Vietnamese have shown that the approach is su-
perior to that of the widely successful back-translation approach. The approach
is straightforward and can be applied on any low resource language translation
to achieve a better and more acceptable translation performance. It could also
be applied on high resource languages to improve the performance.

We showed that the approach is capable of improving the performance of
the model even without using specialized data cleaning methods such as quality
estimation. We also showed that the quality of the backward model is improved
when the model can differentiate between the two data. This is also true for all
models trained on synthetic and authentic data as shown in the training of the
forward models. The work can be extended by comparing the performance of the
proposed method with the other implementations of the self-learning approach
when improving the backward model. Repeated retraining of the backward model
– iterative self-training – can be explored in future works to determine the extent
to which the backward model’s output can be used to improve itself. We also
intend to investigate the efficacy of the approach on high resource languages.
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