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Abstract. Subjective attack trees are an extension to traditional attack
trees, proposed so to take uncertainty about likelihoods of security events
into account during the modelling of security risk scenarios, using sub-
jective opinions. This paper extends the work of subjective attack trees
by allowing for the modelling of countermeasures, as well as conducting
a comprehensive security and security investment analysis, such as risk
measuring and analysis of profitable security investments. Our approach
is evaluated against traditional attack trees. The results demonstrate
the importance and advantage of taking uncertainty about probabilities
into account. In terms of security investment, our approach seems to be
more inclined to protect systems in presence of uncertainty (or lack of
knowledge) about security events evaluations.
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1 Introduction

In [1], we defined a new model of attack trees (ATs), called a Subjective At-
tack Tree (SAT), that takes uncertainty about likelihoods of successful attacks
(in literature, also referred to as security events) into account. The SAT model
aims to address the limitations of traditional probabilistic attack trees [6, 14, 15],
which use precise values for likelihoods of security events. In many situations, it
is difficult to elicit accurate probabilities due to lack of knowledge, or insufficient
historical data, making the evaluation of risk in existing approaches unreliable.
The SAT model allows for uncertainty modelling about likelihoods, via subjec-
tive opinions in the formalism of Subjective Logic [9]. We also discussed how
subjective opinions are propagated in the model, via the gates of AND and OR,
to compute a subjective opinion on the root node.

The work in [1], however, still lacks several important components for a use-
ful and effective risk and decision analysis. A comprehensive security analysis
requires, in addition to likelihoods of attacks, additional metrics such as cost
of attack, impact, cost of security investments, etc. Several works have consid-
ered the formalism of defense tress, models that add defense mechanisms (i.e.,
countermeasures) to ATs, e.g. [8, 12, 16]. These models make use of such met-
rics to conduct a complete security and risk analysis, and study the efficacy of
proposed countermeasures using economic terms such as Return on Investment
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(ROI) and Return on Attack (ROA) [2, 17]. Any security or security investment
analysis makes use, as an essential component, of probabilistic values. Since like-
lihoods in the SAT model are subjective opinions, it is essential to discuss how
security or security investment analysis is conducted, showing at the same time
how to handle uncertainties in the model for an effective decision analysis.

In this paper, we extend the SAT model by allowing for the conducting of
a comprehensive analysis of security (e.g., risk measuring) and security invest-
ment with ROI index to determine which countermeasures are more profitable.
This paper thus makes the following contributions. (1) we discuss the adding
of countermeasures to the SAT model, and how these countermeasures reduce
risk in presence of uncertainty about probabilities. (2) we conduct security and
decision analysis, including risk computation, and security investment analysis
using ROI index. (3) we conduct an experimental evaluation that compares the
security and investment analysis in SATs with the one in traditional ATs.

In Section 2, we give an overview of subjective logic, followed by an overview
of the SAT model in Section 3. In Section 4, we discuss the adding of countermea-
sures to SAT model. In Section 5, we discuss security and security investment
analysis in SATs. In Section 6, we demonstrate the usability of our approach
in the context of security analysis using the scenario of DDoS attack. In Sec-
tion 7, we evaluate our approach against traditional ATs. Finally, in Section 8,
we conclude the paper, discussing prospects for future work.

2 Subjective Logic

Subjective logic [9] is a formalism for reasoning under uncertainty that extends
probabilistic logic by allowing also for uncertainty degrees to be expressed about
probability values, via subjective opinions. In subjective sogic [9], a subjective
opinion represents the probability distribution of a random variable comple-
mented by an uncertainty degree about the distribution. Let us assume a propo-
sition X such as the workstation is compromised. The validity of X is uncertain
in general, but we can assume there is a “ground truth” probability px that X
is true, and px̄ (i.e., 1 − px) that X is false. This makes X a binary random
variable over the domain X = {x, x̄}. Little amount of evidence supporting this
proposition, or a lack of relevant knowledge, will affect giving the exact proba-
bilities px and px̄. As such, the analyst needs to give a subjective opinion about
them, expressed in terms of beliefs and uncertainty.

A subjective opinion on a binary random variable X, called a binomial opin-
ion, is a tuple ωX =

〈
bx, dx, ux, ax

〉
, representing the belief, disbelief and uncer-

tainty that X is true at a given instance, and ax is the prior probability (also
called the base rate) that X is true in the absence of observations. A prior weight
W > 0 is defined indicating the strength of the prior assumption. An opinion’s
parameters must satisfy: a) bx, dx, ux, ax ∈ [0, 1], and b) bx + dx + ux = 1. For a
given binomial opinion ωX , the corresponding projected probability distribution
P(x) : x→ [0, 1] is determined as P(x) = bx+ax ·ux, where P(x) represents the
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probability estimation of x which varies from the base rate value, in the case of
complete ignorance (ux = 1), to the actual probability in case that ux = 0.

A binomial opinion translates directly into a Beta distribution. The value
of a Beta-distributed random variable X is determined from Nins independent
observations. Let nx, nx̄ be the total number of observations supporting X = x
and X = x̄ respectively. Then the Beta parameters αX =

〈
nx+Wax, nx̄+W (1−

ax)
〉
, where ax is the prior assumption, and W is a prior weight indicating the

strength of the prior assumption. Unless specified otherwise, we assume ax = 0.5,
and W = 2, yielding a uniform distribution for the prior assumption.

Given a subjective opinion ωX =
〈
bx, dx, ux, ax

〉
, we compute the corre-

sponding Beta parameters αX =
〈
αx, αx̄

〉
as αX =

〈
W
ux
bx + Wax,

W
ux
dx +

W (1 − ax)
〉
. Conversely, given Beta parameters αX =

〈
αx, αx̄

〉
, a transfor-

mation from the Beta distribution to a subjective opinion is given as ωX =〈
αx−Wax

SX
, αx̄−W (1−ax)

SX
, WSX

, ax

〉
. where SX is the Dirichlet strength of the beta

distribution. Equations for computing the Dirichlet strength, mean, and variance
directly from a subjective opinion are discussed in [4].

3 An Overview of Subjective Attack Trees

A Subjective Attack Tree (SAT) [1] is an extension to traditional attack trees,
proposed so to take uncertainty about likelihoods of security events into account
during the modelling of security risk scenarios, via subjective opinions. Fig 1
shows an example SAT with three possible paths (ways) an attacker can choose
to achieve their main goal (MG). These paths begin by the execution of the
following security events: (SE1 and SE2), SE3, and (SE4 and SE5). Taking
the first path with security events SE1 and SE2 as an example, the subjective
opinions on them, respectively, are denoted by ωSE1

and ωSE2
. The subjective

opinion on sub-goal 1 (ωSG1
) is computed from the conjunction of ωSE1

and
ωSE2

, and the subjective opinion on the main goal (ωMG) is computed from
the disjunction of ωSG1 and ωSG2 . The subjective opinion on MG represents
the belief that an attacker can successfully achieve their main goal, the disbelief
that an attacker can successfully achieve their main goal, and the uncertainty
degree about the distribution of these belief and disbelief masses.

In SAT model, subjective opinions are propagated through AND gate using
the conjunction operator of subjective logic [9], and the disjunction operator in
case of OR gate. Fig 2 (b) shows an example computation of a subjective opinion
on event Z via OR gate.

4 Adding Countermeasures to SATs

The SAT model does not take into account defense mechanisms that can be
implemented by the defending organization and the costs sustained for security
investments. We discuss the adding of countermeasures to the SAT model with
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Fig. 1: A Subjective Attack Tree (SAT) model.

(a) (b)

Fig. 2: Computing an opinion on event Z via (a) AND gate, and (b) OR gate.

the aim to reduce risk (i.e., likelihood of successful attacks). Countermeasures in
our approach can be placed at any node in the tree as per the approach in [16].
Adding countermeasures to ATs models in general is aimed to minimise the
likelihood of attacks. In the SAT model, the likelihoods are subjective opinions,
so we discuss how these opinions are affected when adding countermeasures.

Each added countermeasure should be associated a value representing the ef-
fectiveness of the countermeasures in reducing risk. In most existing approaches,
the effectiveness value of a countermeasure is expressed as a percentage, and the
likelihood of an attack in presence of the countermeasure is then calculated by
multiplying the likelihood value with the given percentage for the countermea-
sure’s effectiveness. However, when there is uncertainty about the likelihood (as
in SATs), the calculation would differ. In SATs, adding a countermeasure does
not reduce the uncertainty about the likelihood of an event, but the belief mass
and base rate. Therefore, the effectiveness value will affect only the belief mass
and base rate while maintaining the same uncertainty value. The disbelief mass
is calculated by subtracting the total value of the resulting new belief mass and
uncertainty from one. Formally, assuming ωSE = 〈bse, dse, use, ase〉 is the subjec-
tive opinion about a security event SE, C a potential countermeasure to reduce
risk, and CE the countermeasure effectiveness. We compute the opinion about
SE with countermeasure C, denoted by ω

′

SE = 〈b′se, d
′

se, u
′

se, a
′

se〉, as follows

1. b
′

se = bse × (1− CE)
2. a

′

se = ase × (1− CE)
3. u

′

se = use
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4. d
′

se = 1− (b
′

se + u
′

se)

Fig 3 shows an example SAT model with two applied countermeasures (ovals),
and how they reduce risk according to the above discussion.

Fig. 3: A SAT model with two countermeasures (ovals), showing how they reduce
likelihoods (i.e., opinions) on the leaves, and subsequently on the root node.

5 Security Analysis in SATs

5.1 Risk Computation

In the context of risk analysis, risk is typically computed using the well-known
formula risk = probability × impact. In ATs, the computation of risk is often
done at the root node (i.e., risk caused by the successful achievement of the
attacker’s goal). In SATs, we deal with subjective opinions rather than proba-
bilities, and so the risk calculation is different. Risk calculation in SATs depends
basically on how the impact value was represented. In literature , most existing
approaches represent impact as single values within the interval [0, 1], and very
rare is represented as a beta distribution, e.g., [13] for characterizing earthquake
damage. In this paper, we demonstrate how risk is computed in case that the
impact is a single value and in case is given as a beta distribution.

In contrast to the traditional one, risk calculation in our approach results
in a distribution of risk (loss) values in the form of a beta distribution. This is
because that there is an uncertainty distribution about the likelihood, expressed
in subjective opinions, and these opinions, as discussed in Section 2, have one-
to-one correspondence to beta distributions. The loss distribution is therefore a
beta distribution, provided that the impact value belongs to the interval [0, 1].

Risk computation with a single value of impact: when the impact is
given as a single value within the interval [0, 1], risk is calculated as follows.
First, we multiply the projected probability of the subjective opinion (see Eq 2)
with the impact value to obtain the mean of risk, Rµ. Second, we compute the
Dirichlet strength of the subjective opinion (see [4]), as this would represent also
the Dirichlet strength of risk SR. Having Rµ and SR, we can compute the Beta
parameters of risk as follows: α = 〈Rµ.SR, (1−Rµ).SR〉.
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Example 1. Suppose the subjective opinion about security event SE is ωSE =
〈0.6, 0.2, 0.2, 0.5〉, and the impact is 0.4. The mean of risk Rµ = 0.7×0.4 = 0.28,
where 0.7 is the projected probability of ωSE . The Dirichlet strength of ωSE is
10, and so SR = 10. Accordingly, α = 〈0.28 × 10, (1 − 0.28) × 10〉 = 〈2.8, 7.2〉.
The beta distribution of risk in this example is shown in Fig 4 (a).

Risk computation with a beta distribution representation of im-
pact: when the impact is given as a beta distribution, we compute risk as fol-
lows:

1. we translate the given subjective opinion into the corresponding beta distri-
bution, and then compute its mean and variance.

2. we compute the mean and variance of the impact from the given beta pa-
rameters of the impact distribution.

3. we use the product operator of independent Beta-distributed random vari-
ables (see [4]) to compute the mean and variance of risk.

4. we use these mean and variance of risk to compute its beta parameters.

Example 2. Suppose an opinion about event SE is ωSE = 〈0.9, 0.0, 0.1, 0.5〉.
Suppose also the impact I is represented as a beta distribution with shape pa-
rameters α = 〈18, 4〉. The risk distribution is then obtained by first computing
the mean and variance of both the likelihood (ωSE) and impact distributions.
This yields µSE = 0.95, σ2

SE = 0.00226, µI = 0.75, and σ2
I = 0.0075. Using the

product operator [4], we obtain the mean and variance of risk R as µR = 0.7125
and σ2

R = 0.0.00805. Using these values, we obtain beta parameters for risk as
α = 〈17.41, 7.03〉. The risk distribution is shown in Fig 4 (b).
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Fig. 4: The beta distributions of loss (risk) in (a) Example 1 and (b) Example 2,
where ”0” indicates no risk and ”1” the risk is catastrophic.

Since both representation of impact (the single value and beta distribution
representation) yields a beta distribution for risk, for simplicity, in the rest of
the paper, we model impact as single values. Our approach of decision analysis
takes into account the uncertainty about a likelihood or about risk, so we discuss
in the next section, how we deal with uncertainty for risk and decision analysis.
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5.2 Dealing with Uncertainty for Decision Analysis

In our approach, metrics such as likelihood and risk are defined as beta distribu-
tions (given that subjective opinions, for likelihoods, can be translated into the
corresponding beta distributions) rather than single values. For decision analy-
sis, it is important to handle the uncertainty in such metrics, as we will see in the
next section. We discuss in this section two possible approaches to reason about
risk (or likelihood) in presence of uncertainty. These approaches are (1) reason-
ing with the most expected value, and (2) reasoning with best and worst-case
scenarios via confidence intervals.

Approach 1: Reasoning with the Most Expected Value: In this ap-
proach, security managers use the most expected value about a likelihood (or
risk) for decision-making. In case of likelihood, the most expected value is the
projected probability of the subjective opinion, and it is the mean in case of the
risk distribution. This approach yields a single value of risk, and therefore the
decision analysis would be similar to the traditional approaches of risk assess-
ment, except that in our approach the uncertainty value is taken into account
when computing the most expected value.

Approach 2: Reasoning with Confidence Intervals for Best and
Worst-Case Scenarios: In this approach, risk is represented by a range of
possible values, determined by lower and upper bounds with a given confi-
dence level, rather than single values, allowing for best- and worst-case sce-
narios to be considered. In literature, several approaches exist to compute con-
fidence intervals of a beta distribution, e.g., [5, 10]. A simple approach is the
one discussed in [11], wherein the lower bound of the confidence interval is de-
termined as 1 − BETAINV (1 − α/2, n − k + 1, k), and the upper bound as
BETAINV (1−α/2, k+1, n−k), where α is the level of statistical significance, k
the number of events observed, and n the sample size. BETAINV () is the cumu-
lative distribution function of a beta distribution. The lower and upper bounds
calculated from these two equations will determine the range of possible values
that the risk value is likely to be within.

5.3 Analysing Security Investment: ROI Analysis

Return on investment (ROI) ([17]) is an economic metric that is widely used to
measure the profit obtained by the implementation of a specific countermeasure
CMi (thereby evaluating the efficacy of an investment or comparing the efficacy
of a number of different investments). ROI directly measures the amount of
return on a particular investment, relative to the investment’s cost. According
to [17], ROI for a security investment is defined as

ROI =
(Risk exposure×%Risk mitigated)− Investment cost

Investment cost
(1)

In AT models, risk exposure represents risk at the root node. Since counter-
measures do not affect impact value directly (the impact value at the root node
is the same apart from whether there were countermeasures applied or not), but
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rather the likelihood of an event occurrence [16], we may consider risk expo-
sure as the likelihood (in SAT, the subjective opinion) about the goal (i.e., the
top event) when we come to compute ROI. % Risk mitigated is the amount of
the percentage risk mitigated as a result of applying a specific countermeasure.
Unlike traditional probabilistic values, it is difficult to calculate directly such a
percentage because the uncertainty value and base rate at the root node might
change when applying a countermeasure to the model. Therefore, we have first
to resolve uncertainty in the subjective opinions, using one of the approaches
discussed in Section 5.2, to be able to compute the percentage risk mitigated,
and use this percentage in the above ROI formula.

As an example, suppose the subjective opinion at the root node without
countermeasure CMi is ωgoal−without−CMi

= 〈0.65, 0.15, 0.20, 0.85〉 and with the
countermeasure is ωgoal−with−CMi

= 〈0.42, 0.25, 0.33, 0.72〉. Suppose also we want
to reason about risk using the most likely value, i.e., the projected probability of
each subjective opinion. The projected probability of ωgoal−without−CMi

is 0.82,
and it is 0.66 for ωgoal−with−CMi

. The percentage risk mitigated is then calculated

as 1 − 0.66
0.82 × 100 = %19.5. For abbreviation,, we denote such a calculation for

risk mitigated by RM .
Investment cost is the cost of the applied countermeasure. Based on the above

discussion, we re-define ROI for a countermeasure CMi as

ROICMi =
(Rsys ×%RM)− CCMi

CCMi

(2)

where Rsys is the system risk, i.e., the opinion on the root node ωgoal, with an un-
certainty treated according to the approaches in Section 5.2. In other words, Rsys
can take any of the following values: the projected probability of ωgoal, the lower
bound of the desired confidence interval, or its upper bound. A countermeasure
CMi is only profitable if (Rsys ×%RM) > CCMi

, and this is satisfied when the
risk value is withing the scale of [0, 100] rather than [0, 1] ([3]). Therefore, we
calculate risk as Rsys× 100. If ROI is zero or a negative number, the investment
is not profitable. Otherwise, it is financially justified, and so the higher value of
ROI the higher desired an investment. Suppose in the given example above, the
cost for implementing CMi is $20. ROICMi

is then (82×0.195)−20)/20 = −0.2.
Since ROI is negative, the countermeasure is not profitable.

6 An Illustrative Example

To demonstrate the usability of our approach in security analysis, we use the
example of DDoS attack discussed in [7] as a case study. To simplify the example,
we show only portions of the complete scenario for implementing DDoS attack
as depicted in Fig 5. The effectiveness of each countermeasure is shown in Fig 5,
and their costs of implementation (in $) are given as follows: C(CM1) = 10,
C(CM2) = 20, C(CM3) = 15, and C(CM4) = 20.

Further, the model shows the impact values (below the subjective opinions).
The propagation of impact values follows the approach in [15]. In case of OR gate,
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we choose to propagate the maximum value of impact to consider the worst-case
scenario in calculating the impact at the root node. We do so because the analyst
has to be prepared for the worst possible consequence (i.e., the attack with
maximum impact) and because the attacker’s capabilities and preferences cannot
be known in advance. In case of AND gate, the impact values are propagated in
the model according to formula defined in [8]. However, since our impact scale
is [0, 1] and not [1, 10], we redefine the propagation rule of impact values as
follows 1−

∏n
i=1(1− IAi

), where n is the number of children nodes.

Fig. 5: The SAT model with countermeasures (ovals) for the DDoS attack sce-
nario. The values below the subjective opinions are the impact values.

Table 1: The subjective opinion on the root node, risk mitigated, and ROI for
each countermeasure in the DDoS attack scenario.

Applied countermeasure Subjective opinion on goal Risk mitigated ROI

CM1 〈0.56, 0.13, 0.31, 0.72〉 18% 0.70
CM2 〈0.67, 0.09, 0.24, 0.81〉 09% -0.57
CM3 〈0.61, 0.14, 0.25, 0.74〉 16% 0.01
CM4 〈0.68, 0.04, 0.28, 0.84〉 03% -0.85

The subjective opinion about DDoS attack is 〈0.75, 0.03, 0.22, 0.89〉, and the
impact is 0.952. Therefore, the risk is a beta distribution with parameters α =
〈8.19, 1〉. The mean of risk is 0.9, representing the most likely value of risk. The
95% confidence interval of the risk distribution is [0.833, 0.967], representing
the lowest and highest possible values. Security managers, unlike in traditional
risk assessment approaches, can use these values to reason about risk and make
decisions as per their risk attitudes.
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We now turn our attention to the analysis of security investment, using ROI
index. Applying each countermeasure would result in a reduction in the sub-
jective opinion about the top event, i.e., ωgoal. Table 1 shows the subjective
opinion about DDoS attack when applying each countermeasure, and the per-
centage risk mitigated after resolving uncertainty about the subjective opinions
using the most likely value approach. Using Eq 2, we obtain ROI for each coun-
termeasure as shown in Table 1. As appear, two countermeasures, CM2 and
CM4, since their ROI are negative numbers, should be excluded. The only two
countermeasures that are profitable are CM1 and CM3, and CM1 is more prof-
itable than CM3. However, ROI for CM3 approaches from zero, and so it does
not seem to be significantly financially justified. As a result, the security manager
may think of applying CM1 (install anti-virus software) as a possible security
solution against the DDoS attack.

7 Experimental Evaluation

We use the SAT model in Fig 6 as an example model to conduct an evalua-
tion of our approach against traditional ATs in terms of security and security
investment analysis. The model contains two countermeasures CM1 and CM2

applied to the security events SE1 and SE2, respectively. The subjective opin-
ions about the four security events were established so as to contain relatively
high uncertainty values. Propagating these opinions led to also a relatively high
uncertainty (0.38) about the likelihood on the root node. The uncertainty values

Fig. 6: A SAT model with two countermeasures. The values below the subjective
opinions are impact values.

in the opinions lead to several different underlying probability values in contrast
to a 0 uncertainty. For example, the probabilities of 0.75, 0.6, and 0.55 might rep-
resent possible truth values for the opinion about SE4 (〈0.40, 0.25, 0.35, 0, 50〉).
In this example, the uncertainty value has affected only the belief mass of the
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probability distribution of 0.75, affected only the disbelief mass of the proba-
bility distribution of 0.6, and affected both the belief and disbelief masses of
the probability distributions of 0.55. Based on such a discussion, we generated
probability values for the four security events (assuming they represent truth
values) as follows: Prob(SE1) = 0.3, Prob(SE2) = 0.25, Prob(SE3) = 0.4, and
Prob(SE4) = 0.45. Accordingly, the probability at the root node is 0.24.

First, we began by comparing the risk outcomes from the SAT model of Fig 6
with the risk obtained from applying traditional risk analysis using the above set
of probabilities. In case of the SAT model, the risk obtained is a beta distribution
with parameters α = 〈4.6, 5.4〉 and mean 0.46. The 95% confidence interval of
the risk distribution is [0.39, 0.52]. In case of the AT approach, the risk obtained
is the single value 0.24. Suppose the security manager would only protect the
system against the attack if the risk is greater than 0.45. It is evident that in
case of the AT approach, the system would not be protected. In case of the SAT
model, there are cases in which the security manager would choose to protect the
system. If they rely on the most likely value (the mean of risk), or if the are too
pessimistic and wish to consider the worst case scenario (via the upper bound of
the confidence interval), they will go for protecting the system, since both values
are greater than the defined threshold value. However, the decision would be the
same as in the AT approach if they are optimistic and wish to consider the best
case scenario (via the lower bound of the confidence interval).

Table 2: The projected probability of each subjective opinion about the attack
with and without countermeasures and their 95% confidence interval.

Subjective opinion on attack Projected probability 95% Confidence interval

〈0.33, 0.09, 0.38, 0.44〉 0.5 [0.29, 0.71]
〈0.27, 0.32, 0.41, 0.26〉 0.37 [0.12, 0.61]
〈0.14, 0.44, 0.42, 0.27〉 0.25 [0.03, 0.47]

Next, we evaluated security investments (with ROI index) using the two
approaches. In the SAT model, the subjective opinion about the attack without
countermeasures is 〈0.33, 0.09, 0.38, 0.44〉. When applying each of CM1 and CM2

to the model, the resulting subjective opinions are 〈0.27, 0.32, 0.41, 0.26〉 and
〈0.14, 0.44, 0.42, 0.27〉, respectively. The projected probability of each subjective
opinion and their 95% confidence intervals are given in Table 2. Using these
information and cost of each countermeasure, we considered three scenarios to
compute ROI for each countermeasure: (1) the most likely scenario (based on
the projected probability), (2) the worst-case scenario (based on the lower bound
of the confidence interval), and (3) the best-case scenario (based on the upper
bound of the confidence interval). We denote the ROI calculated from the first
scenario by ROIµ, and by ROIlower and ROIupper for the other two scenarios,
respectively. The ROI values obtained for each countermeasure are all positives
(except in one case) as shown in Table 3.
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Table 3: ROI values for each countermeasure in case of SAT model (ROIµ,
ROIlower, and ROIupper) and in case of AT approach (ROIpro).

Countermeasure ROIµ ROIlower ROIupper ROIpro

CM1 0.3 0.6 0 -0.49
CM1 0.25 0.29 0.17 -0.24

In case of AT approach, the ROI obtained for each countermeasure, denoted
by ROIpro, is -0.49 for CM1 and -0.24 for CM2 (see Table 3). Clearly, none of
the countermeasures are profitable, unlike in the SAT model, wherein the two
countermeasures are financially justified in the three defined scenarios, except
with the worst-case scenario for CM1, in which ROI returned a 0 value.

Analysing the above results, our experiments clearly demonstrate the impor-
tance of taking uncertainty into account when conducting security analysis using
models such as ATs, as doing so can lead to completely different security deci-
sions. In terms of risk analysis, the SAT model offers a more flexible approach
to decision-making by allowing to consider different scenarios (e.g., the best and
worst-case scenarios), and so allowing security managers to take decisions based
on, for instance, their risk attitudes, or the organisation’ financial capabilities.
In terms of security investments analysis (with ROI index), it seems that taking
uncertainty into account results in higher ROI values for countermeasures (in
contrast to a 0 uncertainty). This means that the chance to apply a countermea-
sure in the SAT model is higher, which could be also interpreted as follows: our
approach seems to be more inclined to protect systems in case of uncertainty (or
lack of knowledge) about security events evaluations.

8 Conclusions and Future Work

We extended a previous work on subjective attack trees by allowing for the
modelling of countermeasures as well as conducting a comprehensive security
and security investment analysis with ROI index. We showed how to calculate
risk in SATs, and how to handle uncertainty for decision-making. Finally, we
evaluated our approach against traditional attack trees, showing that SATs lead
to different outcomes in contrast to ATs, and in terms of security investment,
they seem to be more inclined to protect systems in presence of uncertainty
about security events evaluations.

As future work, we will extend the analysis by allowing for additional metrics
to be considered, such as cost of attack, allowing us to study another financial
index, namely return on attack (ROA). With both ROA and ROI, we quan-
tify the nature of the competition between the attacker and the defender. We
will study how uncertainty might affect such a competition, and how the best
countermeasures can be selected under uncertainty about the two indexes.
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