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Abstract. Various structured argumentation frameworks utilize preferences as part

of their standard inference procedure to enable reasoning with preferences. In this

paper, we consider an inverse of the standard reasoning problem, seeking to iden-

tify what preferences over assumptions could lead to a given set of conclusions be-

ing drawn. We ground our work in the Assumption-Based Argumentation (ABA)

framework, and present an algorithm which computes and enumerates all possible

sets of preferences over the assumptions in the system from which a desired conflict

free set of conclusions can be obtained under a given semantic. After describing

our algorithm, we establish its soundness, completeness and complexity.
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1. Introduction

Assumption-based argumentation (ABA) [9,16] is a structured argumentation formalism

where knowledge is represented through a deductive system comprising of a formal lan-

guage and inference rules. Defeasible information is represented in the form of special

entities in the language called assumptions. Attacks are then constructively defined over

sets of assumptions whenever one set of assumptions supports the deduction of the con-

trary of some assumption in a different set of assumptions. ABA is equipped with differ-

ent semantics for determining ‘winning’ sets of assumptions. In turn, sets of ‘winning’

(aka acceptable) arguments can be determined from the ‘winning’ sets of assumptions,

since the assumption-level and argument-level views are fully equivalent in ABA.

ABA+ [8] extends ABA with preferences to assist with discrimination among con-

flicting alternatives. Assumptions are the only defeasible component in ABA and there-

fore preferences are defined over assumptions rather than arguments as is the case in

preference-based argumentation frameworks (PAFs) [2]. Unlike PAFs — that use attack

reversal with preferences given over arguments — ABA+ uses attack reversal with pref-

erences given over assumptions (at the object level), that form the support of arguments.

Preferences are integrated directly into the attack relation, without lifting preferences

from the object level to either the argument or the extension levels (as is done in systems

such as ASPIC+ [13]).

1This work was supported by EPSRC grant EP/P011829/1, Supporting Security Policy with Effective Digital
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ABA semantics allow one to compute an acceptable or winning set of arguments,

and the semantics of ABA+ extend ABA semantics to take preferences over assumptions

into account. In this paper we focus on the problem of eliciting the preferences which

unify an ABA framework with its ABA+ counterpart, seeking to answer the following

questions.

1. What are the possible preferences over assumptions for a given conflict-free ex-

tension in an ABA framework that ensure the acceptability of the extension using

ABA+ semantics?

2. How do we find a combination of all possible sets of such preferences?

3. What are the unique and common preferences for a given extension compared to

all other extensions (under a multi-extension semantics)?

The following example suggests one application for these ideas.

Example 1.1 (Journey Recommendation) Alice uses an online journey recommendation

system to find options for travelling between two cities. The system suggests two options:

by ground or air. If Alice chooses ground, the system can infer that Alice likes to travel

by train and not by plane. The system can learn Alice’s preferences from this interaction

and suggest the right recommendation next time. In the future, the system can justify its

recommendation to Alice by arguing that travelling by ground is the best option for her

since she prefers to travel by train. Furthermore, if the train company or airline states

that their trains or planes are “air-conditioned vehicles”, then the system could learn an

additional implicit preference, namely that Alice prefers to travel on an “air-conditioned

vehicle”.

Preferences not only help in finding the best solutions (via winning arguments) suitable

for a particular user but also in justifying such solutions. In turn, computing all possible

sets of preferences helps in finding all justifications. Previous work on the topic [11]

— which we build on — considered only abstract argumentation frameworks (namely

Dung’s AAFs and PAFs), and this paper extends the state of the art by considering a

structured setting, building on ABA and ABA+ frameworks. Moving to a structured set-

ting is non-trivial and requires additional issues to be addressed that do not arise in the

abstract cases.

The remainder of this paper is structured as follows. In Section 2, we present the

background on ABA and ABA+ frameworks. In Section 3, we present our proposed ap-

proach and algorithm for computing all possible sets of preferences for a given extension

and ABA framework, and we prove the soundness and completeness of the algorithm.

In Section 4, we present the evaluation and results. In Section 5, we present the related

work. Finally, we conclude and suggest future work in Section 6.

2. Background

We begin by introducing ABA and ABA+ , with the following material taken from [9,16,

8]. An ABA framework is a tuple (L ,R,A ,− ), where:

1. (L ,R) is a deductive system with L a language (a set of sentences) and R a set

of rules of the form ϕ0← ϕ1, ...,ϕm with m≥ 0 and ϕi ∈L for i ∈ {0, ...,m}. ϕ0

is referred to as the head of the rule, and ϕ1, ...,ϕm is referred to as the body of the

rule. If m = 0, then the rule ϕ0← ϕ1, ...,ϕm is said to have an empty body, and is

written as ϕ0←⊤, where ⊤ /∈L .
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Figure 1. Example assumption graph G1

2. A ⊆L is a non-empty set, whose elements are referred to as assumptions;

3. − : A →L is a total map where for α ∈ A , the L -sentence ᾱ is referred to as

the contrary of α .

A deduction2 for ϕ ∈L supported by S ⊆L and R⊆R, denoted by S ⊢R ϕ , is a

finite tree with: (i) the root labelled by ϕ , (ii) leaves labelled by ⊤ or elements from S,

(iii) the children of non-leaf nodes ψ labelled by the elements of the body of some rule

from R with head ψ , and R being the set of all such rules. For E ⊆L , the conclusions

Cn(E) of E is the set of sentences for which deductions supported by subsets of E exist,

i.e., Cn(E) = {φ ∈L : ∃S ⊢R φ ,S ⊆ E,R⊆R}.
The semantics of ABA frameworks are defined in terms of sets of assumptions meet-

ing desirable requirements, and are given in terms of a notion of attack between sets of

assumptions. A set A ⊆ A attacks a set B ⊆ A of assumptions, denoted by A B iff

there is a deduction A′ ⊢R β , for some β ∈ B, supported by some A′ ⊆ A and R⊆R. If it

is not the case that A attacks B, then we denote this by A 6 B.

For E ⊆ A E is conflict-free iff E 6 E; E defends A ⊆ A iff for all B ⊆ A with

B  A it holds that E  B. A set E ⊆ A of assumptions (also called an extension)

is admissible iff E is conflict-free and defends itself; preferred iff E is ⊆-maximally

admissible; stable iff E is conflict-free and E  {β} for every β ∈ A \E; complete iff

E is admissible and contains every set of assumptions it defends; grounded iff E is a

⊆-minimal complete extension.

Example 2.1 Example 1.1 can be represented in ABA as follows. Let there be an ABA

framework F = (L ,R,A ,−) with language L = {a,b,c,d,e, f}; set of rules R =
{d ← a,c; e← b,c}; set of assumptions A = {a,b,c}. Contraries are then given by:

a = e,b = d,c = f . Here a and b stand for “plane” and “train” respectively, and c

stands for “air-conditioned vehicle”. The contraries of a and b, namely e and d stand

for “ground” and “air”, and the contrary of c, f stands for “hot”.

F is illustrated in Figure 1. Here, nodes represent sets of assumptions and directed

edges denote attacks. {b,c} attacks {a}, {a,c} attacks {b}, {a,c} and {b,c} attack each

other and {c} is un-attacked and does not attack anyone.

F has two preferred and stable extensions {a,c} and {b,c}, with conclusions

Cn({a,c}) = {a,c,d} and Cn({b,c}) = {b,c,e}, respectively. F has a unique grounded

extension {c}, with conclusions Cn({c}) = {c}. Furthermore, all of {c}, {a,c} and

{b,c} are complete extensions.

ABA+ is an extension of the ABA framework with a preference ordering ≤ on the

set A of assumptions, defined as follows.

2We only consider flat ABA frameworks, where assumptions cannot be deduced from other assumptions.
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Definition 2.1 An ABA+ framework is a tuple (L ,R,A ,− ,≤), where (L ,R,A ,− ) is

an ABA framework and ≤ is a pre-ordering defined on A .

< is the strict counterpart of ≤, and is defined as α < β iff α ≤ β and β � α , for

any α and β . The attack relation in ABA+ is then defined as follows.

Definition 2.2 Let A,B ⊆ A , A <-attacks B, denoted by A < B iff either: (i) there is

a deduction A′ ⊢R b̄, for some b ∈ B, supported by A′ ⊆ A, and ∄a′ ∈ A′ with a′ < b; or

(ii) there is a deduction B′ ⊢R ā, for some a ∈ A, supported by B′ ⊆ B, and ∃b′ ∈ B′ with

b′ < a.

The <-attack formed in the first point above is called a normal attack, while the <-

attack formed in by the second point is a reverse attack. We write A 6 B to denote that A

does not <-attack B. The reverse attack ensures that the original conflict is preserved and

that conflict-freeness of the extensions is attained, which is the basic condition imposed

on acceptability semantics. Flatness is defined as for standard ABA frameworks, and we

assume that the ABA and ABA+ frameworks we deal with are flat.

Furthermore, for A⊆A , A is <-conflict-free iff A 6 < A; also, A <-defends A′ ⊆A

iff for all B⊆A with B < A′ it holds that A < B. In ABA+ , an extension E ⊆A is <-

admissible iff E is <-conflict-free and<-defends itself; <-preferred iff E is⊆-maximally

<-admissible. <-stable iff E is <-conflict-free and E  < {β} for every β ∈ A \E; <-

complete iff E is <-admissible and contains every set of assumptions it <-defends; <-

grounded iff E is a ⊆-minimal <-complete set of assumptions.

Example 2.2 We extend the ABA framework of Example 2.1 to ABA+ by including prefer-

ences over assumptions. Let there be an ABA+ framework F+ = (L ,R,A ,−,≤) with:

L = {a,b,c,d,e, f}; R = {d← a,c; e← b,c}; A = {a,b,c}; a = e,b = d,c = f . a< b

(i.e., < is a pre-order with a≤ b,b 6≤ a). Here a < b represents the preference that Alice

prefers to travel by train compared to plane. F+ is graphically represented in Figure 2

where the nodes contain sets of assumptions and directed edges denote attacks. Dashed

arrows indicate normal attacks, dotted arrows indicate reverse attacks and solid arrows

indicate <-attacks that are both normal and reverse.

In F+, {b,c} supports an argument for the contrary e of a, and no assumption in

{b,c} is strictly less preferred than a. Thus, {b,c} <-attacks {a}, as well as any set

containing a via normal attack. On the other hand, {a,c} (supporting an argument for

the contrary d of b) is prevented from <-attacking {b}, due to the preference a < b.

Instead {b}, as well as any set containing b, <-attacks {a,c} via reverse attack. Overall,

F+ has a unique <-σ extension (where σ ∈ {grounded,preferred,stable,complete}),
namely E = {b,c}, with conclusions Cn(E) = {b,c,e}.



3. Approach and Algorithms for Preference Elicitation

In this section, we present an extension-based approach for preference elicitation within

an ABA framework. The core idea is that by observing what conclusions a reasoner

draws based on their knowledge base, we can reason about what preferences over as-

sumptions they hold. Thus, given an ABA framework, a semantics σ , and a set of as-

sumptions that are considered justified, we identify the preferences necessary to obtain

these assumptions within an ABA+ <-σ extension.

For any two assumptions a and b in an ABA framework, we use the strict preference

relation a< b to denote that a is strictly less preferred to b, i.e., a is of lesser strength than

b, and we use the preference relation a = b to denote that a and b are of equal strength

or preference. There are then three possible cases for which the preferences between

assumptions are computed for a given conflict-free extension E in an ABA framework.

Case 1: Suppose a ∈A , β ⊆A and a ∈ E , ∄b ∈ β s.t.b ∈ E such that a is attacked by

β , i.e., β ⊢R ā, where R⊆R and a is not defended by any unattacked assumptions other

than a in the extension. Then ∀b ∈ β , it is the case that b ≤ a (i.e., b < a or b = a, and

a 6< b) and ∃b′ ∈ β such that b′ < a.

For example, let β = {b1,b2} and β ⊢R ā be given, then we have the following set

of sets of all possible preferences: {{b1 < a,b2 = a},{b1 = a,b2 < a},{b1 < a,b2 < a}}.
This ensures that there is at least one assumption in β that is strictly less preferred than the

assumption a whose contrary β supports deductively, and a is not strictly less preferred

than any assumption in β .

Case 2: Suppose α ⊆A , b ∈A and ∃a ∈ α s.t. a ∈ E , b /∈ E , and suppose α attack b,

i.e., α ⊢R b̄, where R⊆R and b does not attack α . Then ∀a ∈ α , it is the case that b≤ a

(i.e., b < a or b = a, and a 6< b)

For example, let α = {a1,a2} and α ⊢R b̄ be given, then we have the following

set of sets of all possible preferences: {{b < a1,b = a2},{b = a1,b < a2},{b < a1,b <
a2},{b = a1,b = a2}}. This ensures that there is not a single assumption in α that is

strictly less preferred then the assumption b whose contrary α deductively supports.

Case 3: Suppose a∈A , β ,γ ⊆A and a∈ E , ∃c∈ γ s.t. c∈ E , ∄b∈ β s.t.b∈ E where a,

b and c are different assumptions, such that, a is attacked by β , i.e., β ⊢R ā but defended

by any unattacked set of assumptions γ , i.e., γ ⊢R b̄, where b ∈ β . Then ∀b ∈ β , it is the

case that b≤ a and a≤ b (i.e., (b < a) or (b = a) or (a < b)).
For example, let β = {b1,b2} and β ⊢R ā be given, and assume γ ⊢R b̄ for some

b∈ β . Then we have three possible set of sets of preferences: (i) {{b1 < a,b2 = a},{b1 =
a,b2 < a},{b1 < a,b2 < a}}, i.e., there is at least one assumption in β that is strictly

less preferred then the assumption a whose contrary β supports deductively. (ii) {{b1 =
a,b2 = a}}, i.e., all assumptions in β are equal to the assumption a whose contrary β
supports deductively. (iii) {{a < b1,a = b2},{a = b1,a < b2},{a < b1,a < b2}}, i.e.,

assumption a whose contrary β supports deductively is strictly less preferred to at least

one assumption in β . The final set of sets of preferences is the union of the above three

set of sets of preferences given by {{b1 < a,b2 = a},{b1 = a,b2 < a},{b1 < a,b2 <
a},{b1 = a,b2 = a},{a < b1,a = b2},{a = b1,a < b2},{a < b1,a < b2}}

Algorithm 1 exhaustively computes all possible sets of preferences over assumptions

for a given input extension (a conflict-free set of assumptions) in an ABA framework

using the above three cases. The input of Algorithm 1 consists of: (i) ABA framework.



(ii) Extension E which is a conflict-free set of assumptions such that E ⊆A , where A

is the set of assumptions in an ABA framework. The algorithm computes and outputs a

set consisting of finite sets of possible preferences between assumptions, where each set

of preferences is represented as Prefs = {a < b,b = c, ....} such that {a,b,c} ⊆A .

Algorithm 1 Compute all preferences

Require: ABA, an ABA framework

Require: E , an extension (conflict-free set of assumptions)

Ensure: PSet, the set of sets of all possible preferences

1: function ComputeAllPreferences(ABA,E)

2: PSet← COMPUTEPREFERENCES1(ABA,E)
3: PSet← COMPUTEPREFERENCES2(ABA,E,PSet)
4: PSet← COMPUTEPREFERENCES3(ABA,E,PSet)
5: return PSet

Algorithms 2, 3, 4 compute case 1, case 2 and case 3 preferences respectively. The

following are the main steps in Algorithm 2: (i) Line 3: Iteratively pick a single assump-

tion a from the extension E . (ii) Line 4: Find all attacking assumptions B that support

contrary of assumption a. (iii) Lines 5−24: For each B, if there is no unattacked assump-

tion C 6= a that attacks B, then compute all possibilities where at least a single b ∈ B is

less preferred to a.

The following are the main steps in Algorithm 3: (i) Line 3: Iteratively pick a single

assumption a from the extension E . (ii) Line 4: Find assumption b whose contrary A

supports, where a∈ A. (iii) Lines 5−10: For all assumptions b attacked by a, compute all

possibilities where b is either less preferred to a or equal to a. Combine these preferences

with case 1 sets of preferences by adding each such preference to each preference set of

case 1.

The following are the main steps in Algorithm 4: (i) Line 3: Iteratively pick a single

assumption a from the extension E . (ii) Line 4: Find all attacking assumptions B that sup-

port contrary of the assumption a. (iii) Lines 5−14: For each B, if there is an unattacked

assumption C 6= a that attacks B, then compute all possibilities (different sets) where:

(I) At least a single b ∈ B is less preferred to a and ensure that a cannot be less preferred

to b in these sets of preferences (II) a is less preferred to at least a single b∈ B and ensure

that b cannot be less preferred to a in these sets of preferences (III) For all b ∈ B, b is

equal to a.

We establish that our approach is sound (i.e., all its outputs are correct) and complete

(i.e., it outputs all possible solutions with the three cases).

Theorem 3.1 Algorithm 1 is sound in that given an ABA framework and an extension E

(under a given semantic σ ) as input, every output preference set Prefs ∈ PSet when used

with the ABA framework, i.e., ABA+ framework, results in the input E (under a given

<-σ semantic).

Proof 3.1 We prove this by exploring all cases and how these are handled by Algorithms

2-4. Each set of preferences computed for each subset of assumptions α,β ,γ ⊆ A is

such that α,γ ⊆ E,β ∩E = /0. We proceed to show how each of the auxiliary Algorithms

2-4 help us achieve this.

Algorithm 2 computing each case 1 preference set with at least one preference of

the form b < a,a ∈ A,A ⊆ α,∀b ∈ B,B ⊆ β ,B ⊢R ā ensures that the following holds:



Algorithm 2 Compute preferences (Case 1)

Require: ABA, an ABA framework

Require: E , an extension (conflict-free set of assumptions)

Ensure: PSet′′, a set of sets of preferences

1: function ComputePreferences1(ABA,E)

2: PSet←{{}}, PSet′← /0, PSet′′← /0, PSet′′′← /0

3: for all a ∈ E do

4: Attackers←{B | ∃y ∈ Y : B ∈ y,B /∈ E, Y ⊢R ā, R⊆R}
5: for all B ∈ Attackers do

6: Defenders←{C | ∃x ∈ X : C ∈ x,C 6= a,C ∈ E, X ⊢R b̄, b ∈ B,
∄z ∈ Z : D ∈ z, D /∈ E s.t. Z ⊢R C̄, R⊆R}

7: if Defenders = /0 then

8: for all b ∈ B do

9: if (a 6= b) and (∄Prefs′′ ∈ PSet′′ s.t. (b < a) ∈ Prefs′′ or

(b = a) ∈ Prefs′′ or (a < b) ∈ Prefs′′) then

10: for all Prefs ∈ PSet do

11: PSet′← PSet′∪{Prefs∪{b < a}}
12: PSet′← PSet′∪{Prefs∪{b = a}}

13: PSet← PSet′

14: PSet′← /0

15: if ∃Prefs ∈ PSet s.t. Prefs has all equal relations then

16: PSet← PSet\ {Prefs}

17: if PSet′′ = /0 then

18: PSet′′′← PSet

19: else

20: for all Prefs ∈ PSet do

21: for all Prefs′′ ∈ PSet′′ do

22: PSet′′′← PSet′′′∪{Prefs∪Prefs′′}

23: PSet′′← PSet′′′

24: PSet′′′← /0, PSet←{{}}

25: return PSet′′

(1) There is no unattacked C ∈ γ such that ∃c ∈C,c 6= a, C ⊢R b̄ where b ∈ B (lines 6-7).

(2) a ∈ E since a is preferred to at least one of its attacking assumption b in B, which

invalidates the attack B ⊢R ā. (3) Since the input extension E consists of conflict free

assumptions, if a ∈ E then its attacking assumption b 6∈ E where b ∈ B. This supports

that β ∩E = /0.

Algorithm 3 computing each case 2 preferences of the form b < a,b = a,∀a∈ A,A⊆
α,b ∈ B,B⊆ β ,A ⊢R b̄,B 6⊢R ā ensures the following holds: (1) Since A attacks B and B

does not attack A, we have two different preferences between a and b, namely, b < a,b =
a. Therefore a ∈ E with respect to each of these preferences. (2) Preferences b < a,b = a

will be in different preference sets, as per lines 8 and 9. We will have Prefs1← Prefs∪
{b < a} and Prefs2← Prefs∪{b = a}, where Prefs consists of preferences of case 1.

Algorithm 4 computing each case 3 preferences of the form b < a,b = a,a < b,a ∈
A,A ⊆ α,∀b ∈ B,B ⊆ β ,C ⊆ γ such that C is unattacked, B ⊢R ā,C ⊢R b̄ ensures the

following holds: (1) Since C defends A from the attack of B, we have three different



Algorithm 3 Compute preferences (Case 2)

Require: ABA, an ABA framework

Require: E , an extension (conflict-free set of assumptions)

Require: PSet, a set of sets of preferences

Ensure: PSet, an updated set of sets of preferences

1: function ComputePreferences2(ABA,E,PSet)

2: PSet′← /0

3: for all a ∈ E do

4: Attacked←{b | b ∈A , a ∈ A s.t. A ⊢R b̄, R⊆R}
5: for all b ∈ Attacked do

6: if (a 6= b) and (∄Prefs ∈ PSet s.t. (b < a) ∈ Prefs or

(b = a) ∈ Prefs or (a < b) ∈ Prefs) then

7: for all Prefs ∈ PSet do

8: PSet′← PSet′∪{Prefs∪{b < a}}
9: PSet′← PSet′∪{Prefs∪{b = a}}

10: PSet← PSet′, PSet′← /0

11: return PSet

Algorithm 4 Compute preferences (Case 3)

Require: ABA, an ABA framework

Require: E , an extension (conflict-free set of assumptions)

Require: PSet, a set of sets of preferences

Ensure: PSet, an updated set of sets of preferences

1: function ComputePreferences3(ABA,E,PSet)

2: PSet′← /0

3: for all a ∈ E do

4: Attackers←{B | ∃y ∈ Y : B ∈ y,B /∈ E, Y ⊢R ā, R⊆R}
5: for all B ∈ Attackers do

6: Defenders←{C | ∃x ∈ X : C ∈ x,C 6= a,C ∈ E, X ⊢R b̄, b ∈ B,
∄z ∈ Z : D ∈ z, D /∈ E s.t. Z ⊢R C̄, R⊆R}

7: if Defenders 6= /0 then

8: for all b ∈ B do

9: if (a 6= b) and (∄Prefs ∈ PSet s.t. (b < a) ∈ Prefs or

(b = a) ∈ Prefs or (a < b) ∈ Prefs) then

10: for all Prefs ∈ PSet do

11: PSet′← PSet′∪{Prefs∪{b < a}}
12: PSet′← PSet′∪{Prefs∪{b = a}}
13: PSet′← PSet′∪{Prefs∪{a < b}}

14: PSet← PSet′, PSet′← /0

15: return PSet

preferences between a and b, namely, b < a, b = a and a < b. Therefore a ∈ E with

respect to each of these preferences. (2) Preferences b< a,b= a,a< b will be in different

preference sets, as per lines 11-13. We will have Prefs1 ← Prefs∪ {b < a}, Prefs2 ←
Prefs∪ {b = a} and Prefs3 ← Prefs∪ {a < b}, where Prefs consists of preferences of

cases 1 and 2.



Theorem 3.2 Algorithm 1 is complete in that given an ABA framework and an extension

E (under a given semantic σ ) as input, if there is a preference set Prefs ∈ PSet which

when used with the ABA framework, i.e., ABA+ framework, results in the input E (under

a given <-σ semantic), then Algorithm 1 will find it.

Proof 3.2 Similar to above, we prove this by exploring all cases and how these are han-

dled by algorithms 2-4. We find all sets of preferences computed for each subset of as-

sumptions α,β ,γ ⊆ A such that α,γ ⊆ E,β ∩E = /0. We proceed to show how each of

the auxiliary Algorithms 2-4 help us achieve this.

Algorithm 2 computes all case 1 preference sets with at least one preference of the

form b < a, a ∈ A, A ⊆ α, ∀b ∈ B, B ⊆ β , B ⊢R ā. Lines 3-24 exhaustively search for

a ∈ E for which there is an attacker B (not attacked by any unattacked C such that

∄c ∈C, c 6= a). If there are such a,b ∈A where b ∈ B, the algorithm will find them and

add at least one preference of the form b < a to a set of preferences.

Algorithm 3 computes all case 2 preferences of the form b < a, b = a, ∀a ∈ A, A⊆
α, b∈ B, B⊆ β , A ⊢R b̄, B 6⊢R ā. Lines 3-10 exhaustively search for a∈ E for which there

is an attacked set of assumptions B and B does not attack A where a ∈ A. If there are

such a,b ∈A where b ∈ B, the algorithm will find them and add each b < a, b = a to a

different set of preferences.

Algorithm 4 computes all case 3 preferences of the form b < a, b = a, a < b, a ∈
A, A ⊆ α, ∀b ∈ B, B ⊆ β , C ⊆ γ such that C is unattacked, B ⊢R ā, C ⊢R b̄. Lines 3-14

exhaustively search for a ∈ E for which there is an attacker B and there is a defender C

that attacks B. If there are such a,b ∈A where b ∈ B, the algorithm will find them and

add each b < a,b = a,a < b to a different set of preferences.

Given an ABA framework and an extension E (under a given semantic σ ), the complex-

ity (worst-case) of finding all possible sets of preferences between assumptions is expo-

nential due to the exponential complexity of the constituent functions of Algorithm 1.

4. Evaluation and Results

In this section, we present an illustrative example to demonstrate and evaluate Algo-

rithm 1. Let there be an ABA framework F of Example 2.1 and its corresponding as-

sumption graph G1 shown in Figure 1. F has two preferred extensions E1 = {a,c},
E2 = {b,c}. To demonstrate Algorithm 1 we consider the preferred extension E1 = {a,c}
for computing preferences 3. Table 1 shows the preferences computed as follows: (i) At

line 2, Algorithm 2 is called, which returns the sets of case 1 preferences. (ii) At line 3,

Algorithm 3 is called, which returns the sets of preferences with cases 1 and 2 combined

together. (iii) Finally at line 4, Algorithm 4 is called, which returns the sets of preferences

with cases 1, 2 and 3 combined together.

3Due to space restrictions we only demonstrate this on preferred extensions, but the approach works on all

conflict-free extensions.



Table 1. Computing Preferences for Extension E1 = {a,c}

Line No. Preference Sets

2 {b < a,c = a}
{b = a,c < a}
{b < a,c < a}

3 {b < a,c = a,b < c}
{b < a,c = a,b = c}
{b = a,c < a,b < c}
{b = a,c < a,b = c}
{b < a,c < a,b < c}
{b < a,c < a,b = c}

4 {b < a,c = a,b < c}
{b < a,c = a,b = c}
{b = a,c < a,b < c}
{b = a,c < a,b = c}
{b < a,c < a,b < c}
{b < a,c < a,b = c}

Table 2. Preferences for the Preferred ex-

tensions {a,c} and {b,c}

Extensions Preference Sets Unique Common

{a,c} {b < a,c = a,b < c}
{b < a,c = a,b = c}
{b = a,c < a,b < c}
{b = a,c < a,b = c}
{b < a,c < a,b < c}
{b < a,c < a,b = c}

b < a

c < a

b < c

b = a

b = c

c = a

{b,c} {a < b,c = b,a < c}
{a < b,c = b,a = c}
{a = b,c < b,a < c}
{a = b,c < b,a = c}
{a < b,c < b,a < c}
{a < b,c < b,a = c}

a < b

c < b

a < c

Algorithm 5 Algorithm for Computing Unique Preferences

Require: PrefSet1, set of preference sets for extension E1.

Require: PrefSets, set consisting of the set of preference sets for all other given exten-

sions except E1.

Ensure: UniquePrefs, unique preferences for E1.

1: function ComputeUniquePreferences(PrefSet1,PrefSets)

2: for all Prefs1 ∈ PrefSet1 do

3: for all p ∈ Prefs1 do

4: if ∀PrefSet ∈ PrefSets

∄Prefs ∈ PrefSet s.t. p ∈ Prefs then

5: UniquePrefs← UniquePrefs∪ p
return UniquePrefs

Table 2 presents the sets of preferences for the two preferred extensions {a,c} and

{b,c}, and the unique and common preferences for an extension in comparison to an-

other extension. The unique preferences for an extension in comparison to all other exten-

sions for a given semantic can be computed by Algorithm 5. Furthermore, the common

preferences for an extension in comparison to all other extensions can be computed by

Algorithm 6.

An important reason for finding all possible preferences is that, in a multi-extension

semantic, if there are more than two extensions, e.g., E1,E2,E3, then there might be a

preference Pref1 that is unique for E1 in comparison to the preferences of E2, and a

preference Pref2 that is unique for E1 in comparison to the preferences of E3, and the set

of preferences {Pref1,Pref2} would still result in the extension E1 and not E2 or E3.



Algorithm 6 Algorithm for Computing Common Preferences

Require: PrefSet1, set of preference sets for extension E1.

Require: PrefSets, set consisting of the set of preference sets for all other given exten-

sions except E1.

Ensure: CommonPrefs, common preferences for E1.

1: function ComputeCommonPreferences(PrefSet1,PrefSets)

2: for all Prefs1 ∈ PrefSet1 do

3: for all p ∈ Prefs1 do

4: if ∀PrefSet ∈ PrefSets

∃Prefs ∈ PrefSet s.t. p ∈ Prefs then

5: CommonPrefs← CommonPrefs∪ p

return CommonPrefs

5. Related Work

[11] propose an extension-based approach for computing preferences for a given set

of conflict-free arguments in an abstract argumentation framework. However, the prefer-

ences are computed over abstract arguments which are atomic and the algorithms do no

not take into account structural components of arguments such as assumptions, contraries

and inference rules in the context of structured argumentation formalisms in particular

ABA and ABA+.

Value-based argumentation framework (VAF) [4,5,1] extends a standard argumenta-

tion framework to take into account values and aspirations to allow divergent opinions for

different audiences. Furthermore, value-based argumentation frameworks (VAFs) have

been extended to take into account the possibility that arguments may support multiple

values, and therefore, various types of preferences over values could be considered in

order to deal with real world situations [10].

ABA+ [8] generalises preference-based argumentation framework (PAF) [2] and

improves assumption-based argumentation equipped with preferences (p ABA) [17].

ASPIC+ [13] encompasses many key elements of structured argumentation such as strict

and defeasible rules, general contrariness mapping and various forms of attacks as well

as preferences. Another variation is an extended argumentation framework (EAF) [12]

that considers the case where arguments can express preferences between other argu-

ments. While the above structured argumentation frameworks allow handling of pref-

erences over argument components, the main limitation is that preferences need to be

stated in advance.

6. Conclusions and Future Work

In this paper, we presented a novel solution for an important problem of preference elic-

itation in structured argumentation. The main contributions of our work are as follows:

(i) While previous work considered eliciting preferences in abstract argumentation, in

this work, we focused on eliciting preferences in structured argumentation, i.e., ABA.

Hence, the preferences are computed over assumptions rather than abstract arguments.

(ii) We presented a novel algorithm for the structured setting in ABA. We established, its



soundness, completeness and complexity (worst-case). (iii) We presented algorithms for

finding unique and common preferences of an extension in comparison to the preferences

of all other extensions for a given multi-extension semantic.

Currently, we provide a mechanism for filtering preferences via Algorithms 5- 6 by

finding unique and common preferences, we aim to extend this in the future to identify

useful patterns or combinations of preferences such as the ones specified in Section 4.

Moreover, it will be interesting to find out what case of preferences are more likely to be

unique or common for a multi-extension semantic.

Furthermore, we would like to extend the approach presented in this paper to other

structured argumentation frameworks [6], in particular ASPIC+ [13]. We intend to inves-

tigate the relationship between extension enforcement [3,7] and our work. As one appli-

cation, our work could be used in dialogue strategies [15,14] where an agent can have

the capability of inferring preferences and reach her goal if she enforces at least one of

several desired sets of arguments with the application of preferences.
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