
The Persistence of False Memory:
Brain in a Vat Despite Perfect Clocks

Thomas Schlögl[0000−0003−0037−0426], Ulrich Schmid[0000−0001−9831−8583], and
Roman Kuznets[0000−0001−5894−8724]

TU Wien, Vienna, Austria

Abstract. Recently, a detailed epistemic reasoning framework for multi-
agent systems with byzantine faulty asynchronous agents and possibly
unreliable communication was introduced. We have developed a modular
extension framework implemented on top of it, which allows to encode
and safely combine additional system assumptions commonly used in
the modeling and analysis of fault-tolerant distributed systems, like re-
liable communication, time-bounded communication, multicasting, syn-
chronous and lock-step synchronous agents and even agents with coor-
dinated actions. We use this extension framework for analyzing basic
properties of synchronous and lock-step synchronous agents, such as the
agents’ local and global fault detection abilities. Moreover, we show that
even the perfectly synchronized clocks available in lock-step synchronous
systems cannot be used to avoid “brain-in-a-vat” scenarios.

1 Introduction

Epistemic reasoning is a powerful technique for modeling and analysis of dis-
tributed systems [5,9], which has proved its utility also for fault-tolerant systems:
Benign faults, i.e., nodes (termed agents subsequently) that may crash and/or
drop messages, have been studied right from the beginning [16,17,4]. Recently, a
comprehensive epistemic reasoning framework for agents that may even behave
arbitrarily (“byzantine” [14]) faulty have been introduced in [12,11]. Whereas it
fully captures byzantine asynchronous systems, it is currently not suitable for
modeling and analysis of the wealth of other distributed systems, most notably,
synchronous agents and reliable multicast communication.

As we extend the framework [12] in this paper, we briefly summarize its basic
notation. There is a finite set A = {1, . . . , n} (for n ≥ 2) of agents, who do not
have access to a global clock and execute a possibly non-deterministic joint
protocol. In such a protocol, agents can perform actions, e.g., send messages
µ ∈ Msgs , and witness events, in particular, message deliveries: the action of
sending a copy (numbered k) of a message µ ∈ Msgs to an agent j ∈ A in a
protocol is denoted by send(j, µk), whereas a receipt of such a message from
i ∈ A is recorded locally as recv(i, µ). The set of all actions (events) available
to an agent i ∈ A is denoted by Actionsi (Eventsi), subsumed as haps Hapsi :=
Actionsi t Eventsi, with Actions :=

⋃
i∈AActionsi, Events :=

⋃
i∈A Eventsi,

and Haps := Actions t Events .

ar
X

iv
:2

01
1.

01
05

7v
1

 [
cs

.M
A

]
 2

 N
ov

 2
02

0

2 T. Schlögl et al.

The other main player in [12] is the environment ε, which takes care of
scheduling haps, failing agents, and resolving non-deterministic choices in the
joint protocol. Since the notation above only describes the local view of agents,
there is also a global syntactic representation of each hap, which is only available
to the environment and contains additional information (regarding the time of
a hap, a distinction whether a hap occurred in a correct or byzantine way, etc.)
that will be detailed in Sect. 2.

The model utilizes a discrete time model, of arbitrarily fine resolution, with
time domain t ∈ T := N = {0, 1, . . . }. All haps taking place after a timestamp
t ∈ T and no later than t+1 are grouped into a round denoted t½ and treated as
happening simultaneously. In order to prevent agents from inferring the global
time by counting rounds, agents are generally unaware of a round, unless they
perceive an event or are prompted to act by the environment. The latter is ac-
complished by special system events go(i), which are complemented by two more
system events for faulty agents: sleep (i) and hibernate (i) signify a failure to ac-
tivate the agent’s protocol and differ in that the latter does not even wake up the
agent. None of the system events SysEventsi := {go(i), sleep (i), hibernate (i)}
is directly observable by agents.

Events and actions that can occur in each round, if enabled by go(i), are
determined by the protocols for agents and the environment, with non-determin-
istic choices resolved by the adversary that is considered part of the environ-
ment. A run r is a function mapping a point in time t to an n+1 tuple, consist-
ing of the environment’s history and local histories r(t) = (rε(t), r1(t), . . . , rn(t))
representing the state of the whole system at that time t. The environment’s
history rε(t) ∈ Lε is a sequence of all haps that happened, in contrast to the
local histories faithfully recorded in the global format. Accordingly, rε(t+ 1) =
X : rε(t) for the set X ⊆ GHaps of all haps from round t½. The exact updating
procedure including the update of the local agent histories is the result of
a complex state transition consisting of several phases, which are described in
Sect. 2. Proving the correctness of a protocol for solving a certain distributed
computing problem boils down to studying the set of runs that can be generated.

In its current version, [12] only supports asynchronous agents and commu-
nication, where both agents and message transmission may be arbitrarily slow.
Notwithstanding the importance of asynchronous distributed systems in gen-
eral [15], however, it is well-known that adding faults to the picture renders im-
portant distributed computing problems like consensus impossible [6]. There is
hence a vast body of research that relies on stronger system models that add ad-
ditional assumptions. One prominent example are lockstep synchronous sys-
tems, where agents take actions simultaneously at times t ∈ N, i.e., have access
to a perfectly synchronized global clock, and messages sent at time t are received
before time t+ 1. It is well-known that consensus can be solved in synchronous
systems with n ≥ 3f + 1 nodes, if at most f of those behave byzantine [14].

Related work. Epistemic analysis has been successfully applied to synchronous
systems with both fault-free [2] and benign faulty agents [3,8] in the past. In [2],
Ben-Zvi and Moses considered the ordered response problem in fault-free time-

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 3

bounded distributed systems and showed that any correct solution has to es-
tablish a certain nested knowledge. They also introduced the syncausality re-
lation, which generalizes Lamport’s happens-before relation [13] and formalizes
the knowledge gain due to “communication-by-time” in synchronous systems.
This work was extended to tightly coordinated responses in [1,7].

Synchronous distributed systems with agents suffering from benign faults
such as crashes or message send/receive omissions have already been studied
in [16,17], primarily in the context of agreement problems [4,10], which require
some form of common knowledge. More recent results are unbeatable consensus
algorithms in synchronous systems with crash faults [3], and the discovery of the
importance of silent choirs [8] for message-optimal protocols in crash-resilient
systems. By contrast, we are not aware of any attempt on the epistemic analysis
of fault-tolerant distributed systems with byzantine agents.

Main contributions. In the present paper, we extend [12] by a modular ex-
tension framework, which allows to encode and safely combine additional sys-
tem assumptions typically used in the modeling and analysis of fault-tolerant
distributed systems, like reliable communication, time-bounded communication,
multicasting, synchronous and lock-step synchronous agents and even agents
with coordinated actions. We therefore establish the first framework that facili-
tates a rigorous epistemic modeling and analysis of general distributed systems
with byzantine faulty agents. We demonstrate its utility by analyzing some ba-
sic properties of the synchronous and lock-step synchronous agent extensions,
namely, the agents’ local and global fault detection abilities. Moreover, we prove
that even the perfectly synchronized clocks available in the lock-step synchronous
extension cannot prevent a “brain-in-a-vat” scenario.

Paper organization. Additional details of the existing basic modeling frame-
work [12] required for our extensions are provided in Sect. 2. Sect. 3 presents the
cornerstones of our synchronous extension and establishes some introspection re-
sults and the possibility of brain-in-a-vat scenarios. Sect. 4 provides an overview
of our fully-fledged extension framework, the utility of which is demonstrated
by investigating these issues in lock-step synchronous systems in Sect. 5. Some
conclusions in Sect. 6 round-off our paper. All the material omitted from the
main body of the paper due to lack of space is provided in Appendix A.1

2 The Basic Model

Since this paper extends the framework from [12], we first briefly recall the
necessary details and aspects needed for defining our extension framework.

Global haps and faults. As already mentioned in Section 1, there is a global
version of every Haps that provides additional information that is only accessible

1 Please note that the comprehensive appendix has been provided solely for the con-
venience of the reviewers; all material collected there can reasonably be omitted. It
is/will of course be available in the existing publications and in an extended report.

4 T. Schlögl et al.

to the environment. Among it is the timestamp t of every correct action a ∈
Actionsi, as initiated by agent i in the local format, which is provided by a
one-to-one function global (i, t, a). Timestamps are especially crucial for proper
message processing with global (i, t, send(j, µk)) := gsend(i, j, µ, id(i, j, µ, k, t))
for some one-to-one function id : A×A×Msgs × N× T→ N that assigns each
sent message a unique global message identifier (GMI). These GMIs enable
the direct linking of send actions to their corresponding delivery events, most
importantly used to ensure that only sent messages can be delivered (causality).
The resulting sets GActionsi := {global (i, t, a) | t ∈ T, a ∈ Actionsi} of correct
actions in global format are pairwise disjoint due to the injectivity of global . We
set GActions :=

⊔
i∈AGActionsi.

Unlike correct actions, correct events witnessed by agent i are generated by
the environment ε, hence are already produced in the global format GEventsi.
We define GEvents :=

⊔
i∈AGEventsi assuming them to be pairwise disjoint

and GHaps = GEvents t GActions . A byzantine event is an event that was
perceived by an agent despite not taking place. In other words, for each correct
event E ∈ GEventsi, we use a faulty counterpart fake (i, E) and will make sure
that agent i cannot distinguish between the two. An important type of correct
global events is delivery grecv(j, i, µ, id) ∈ GEventsi of message µ with GMI
id ∈ N sent from agent i to agent j. The GMI must be a part of the global
format (especially for ensuring causality) but cannot be part of the local format
because it contains information about the time of sending, which should not
be accessible to agents. The stripping of this information before updating local
histories is achieved by the function local : GHaps −→ Haps converting correct
haps from the global into the local formats for the respective agents in such
a way that local reverses global , i.e., local

(
global (i, t, a)

)
:= a, in particular,

local
(
grecv(i, j, µ, id)

)
:= recv(j, µ).

To allow for the most flexibility regarding who is to blame for an erroneous ac-
tion, faulty actions are modeled as byzantine events of the form fake (i, A 7→ A′)
where A,A′ ∈ GActionsit{noop} for a special non-action noop in global for-
mat. These byzantine events are controlled by the environment and correspond
to an agent violating its protocol by performing the action A (in global for-
mat), while recording in its local history that it either performs a′ = local(A′) ∈
Actionsi if A′ ∈ GActionsi or does nothing if A′ = noop (note that perform-
ing A = noop means not acting). The byzantine inaction fail (i) defined as
fake (i,noop 7→ noop) can be used to make agent i faulty without perform-
ing any actions and without leaving a record in i’s local history. The set of all
i’s byzantine events, corresponding to both faulty events and actions, is denoted
by BEventsi, with BEvents :=

⊔
i∈A BEventsi. To summarize, GEventsi :=

GEventsi t BEventsi t SysEventsi with GEvents :=
⊔
i∈AGEventsi, GHaps :=

GEvents t GActions . Horizontal bars signify phenomena that are correct, as
contrasted by those that may be correct or byzantine.

Protocols, state transitions and runs. The events and actions that occur in
each round are determined by protocols (for agents and the environment) and

non-determinism (adversary). Agent i’s protocol Pi : Li → 22
Actionsi \ {∅} pro-

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 5

vides a range Pi (ri(t)) of sets of actions based on i’s current local state ri(t) ∈ Li

at time t in run r, from which the adversary non-deterministically picks one. Sim-
ilarly the environment provides a range of (correct, byzantine, and system) events

via its protocol Pε : T → 22
GEvents \ {∅}, which depends on a timestamp t ∈ T

but not on the current state, in order to maintain its impartiality. It is required
that all events of round t½ be mutually compatible at time t, called t-coherent
(for details see Appendix, Def. A.7). The set of all global states is denoted by G .

Agent i’s local view of the system after round t½ is recorded in i’s local
state ri(t + 1), also called i’s local history, sometimes denoted hi, which is
agent i’s share of the global state h = r(t) ∈ G . ri(0) ∈ Σi are the initial local
states, with G(0) :=

∏
i∈AΣi. If a round contains neither go(i) nor any event

to be recorded in i’s local history, then the history ri(t + 1) = ri(t) remains
unchanged, denying the agent knowledge that the round just passed. Otherwise,
ri(t + 1) = X : ri(t), for the set X ⊆ Hapsi of all actions and events perceived
by i in round t½, where : stands for concatenation. Thus the local history ri(t)
is a sequence of all haps as perceived by i in rounds it was active in.

Given the joint protocol P := (P1, . . . , Pn) and the environment’s proto-
col Pε, we focus on τPε,P -transitional runs r that result from following these
protocols and are built according to a transition relation τPε,P ⊆ G × G .
Each such transitional run begins in some initial global state r(0) ∈ G(0) and
progresses, satisfying (r (t) , r (t+ 1)) ∈ τPε,P for each timestamp t ∈ T. The
transition relation τPε,P consisting of five consecutive phases is graphically rep-
resented in Appendix, Fig. 1 and described in detail below:

In the protocol phase a range Pε (t) ⊂ 2GEvents of t-coherent sets of events
is determined by the environment’s protocol Pε. Similarly for each i ∈ A, a range
Pi (ri (t)) ⊆ 2Actionsi of sets of i’s actions is determined by the joint protocol P .

In the adversary phase, the adversary non-deterministically chooses a set
Xε ∈ Pε (t) and one set Xi ∈ Pi (ri (t)) for each i ∈ A.

In the labeling phase, actions in the sets Xi are translated into the global
format: αti (r) := {global (i, t, a) | a ∈ Xi} ⊆ GActionsi.

In the filtering phase, filter functions remove all unwanted or impossible
attempted events from αtε (r) := Xε and actions from αti (r). This is done in two
stages:
First, filterε filters out “illegal” events. This filter will vary depending on the
concrete system assumptions (in the byzantine asynchronous case, “illegal” con-
stitutes receive events that violate causality). The resulting set of events to
actually occur in round t½ is βtε (r) := filterε

(
r (t) , αtε (r), αt1 (r), . . . , αtn (r)

)
.

Definition 1. The standard action filter filterBi (X1, . . . , Xn, Xε) for i ∈ A
either removes all actions from Xi when go(i) /∈ Xε or else leaves Xi unchanged.

Second, filterBi for each i returns the sets of actions to be actually performed
by agents in round t½, i.e., βti (r) := filterBi

(
αt1 (r), . . . , αtn (r), βtε (r)

)
. Note that

βti (r) ⊆ αti (r) ⊆ GActionsi and βtε (r) ⊆ αtε (r) ⊂ GEvents .
In the updating phase, the events βtε (r) and actions βti (r) are appended

to the global history r(t). For each i ∈ A, all non-system events from βtεi (r) :=

6 T. Schlögl et al.

βtε (r)∩GEventsi and all actions βti (r) as perceived by the agent are appended
in the local form to the local history ri(t). Note the local history may remain un-
changed if no events trigger an update (see Appendix, Def. A.6 for more details).

rε (t+ 1) := updateε
(
rε (t) , βtε (r), βt1 (r), . . . , βtn (r)

)
(1)

ri (t+ 1) := updatei
(
ri (t) , βti (r), βtε (r)

)
. (2)

The operations in the phases 2–5 (adversary, labeling, filtering and updating
phase) are grouped into a transition template τ that yields a transition re-
lation τPε,P for any joint and environment protocol P and Pε. Particularly, we

denote as τB the transition template utilizing filterBε and filterBi (for all i ∈ A).
As liveness properties cannot be ensured on a round-by-round basis, they

are enforced by restricting the allowable set of runs via admissibility condi-
tions Ψ , which are subsets of the set R of all transitional runs.

A context γ = (Pε,G(0), τ, Ψ) consists of an environment’s protocol Pε, a
set of global initial states G(0), a transition template τ , and an admissibility
condition Ψ . For a joint protocol P , we call χ = (γ, P) an agent-context. A
run r ∈ R is called weakly χ-consistent if r(0) ∈ G(0) and the run is τPε,P -
transitional. A weakly χ-consistent run r is called (strongly) χ-consistent if
r ∈ Ψ . The set of all χ-consistent runs is denoted Rχ. An agent-context χ is
called non-excluding if any finite prefix of a weakly χ-consistent run can be
extended to a χ-consistent run. (For more details see Appendix, Defs. A.8–A.9.)

Epistemics. [12] defines interpreted systems in this framework as Kripke models
for multi-agent distributed environments [5]. The states in such a Kripke model
are given by global histories r(t′) ∈ G for runs r ∈ Rχ given some agent-context χ
and timestamps t′ ∈ T. A valuation function π : Prop → 2G determines states
where an atomic proposition from Prop is true. This determination is arbitrary
except for a small set of designated atomic propositions: For FEventsi :=
BEventsit{sleep (i), hibernate (i)}, i ∈ A, o ∈ Hapsi, and t ∈ T such that t ≤ t′,
– correct(i,t) is true at r(t′) iff no faulty event happened to i by timestamp t,

i.e., no event from FEventsi appears in rε(t),
– correcti is true at r(t′) iff no faulty event happened to i yet, i.e., no event

from FEventsi appears in rε(t
′),

– fake(i,t) (o) is true at r(t′) iff i has a faulty reason to believe that o ∈ Hapsi
occurred in round (t − 1)½, i.e., o ∈ ri(t) because (at least in part) of some
O ∈ BEventsi ∩ βt−1εi (r),

– occurred (i,t)(o) is true at r(t′) iff i has a correct reason to believe o ∈ Hapsi
occurred in round (t − 1)½, i.e., o ∈ ri(t) because (at least in part) of O ∈
(GEventsi ∩ βt−1εi (r)) t βt−1i (r),

– occurred i(o) is true at r(t′) iff at least one of occurred (i,m)(o) for 1 ≤ m ≤ t′

is; also occurred (o) :=
∨
i∈A occurred i(o),

– occurred i(o) is true at r(t′) iff either occurred i(o) is or at least one of
fake(i,m) (o) for 1 ≤ m ≤ t′ is.
The following terms are used to categorize agent faults caused by the environ-

ment’s protocol Pε: agent i ∈ A is fallible if for any X ∈ Pε (t), X ∪ {fail (i)} ∈

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 7

Pε (t); delayable if X ∈ Pε (t) implies X \GEventsi ∈ Pε (t); gullible if X ∈ Pε (t)
implies that, for any Y ⊆ FEventsi, the set Y t(X \GEventsi) ∈ Pε (t) whenever
it is t-coherent. Informally, fallible agents can be branded byzantine at any time;
delayable agents can always be forced to skip a round completely (which does
not make them faulty); gullible agents can exhibit any faults in place of correct
events. Common types of faults, e.g., crash or omission failures, can be obtained
by restricting allowable sets Y in the definition of gullible agents.

An interpreted system is a pair I = (Rχ, π). The following BNF defines the
epistemic language considered throughout this paper, for p ∈ Prop and i ∈ A:
ϕ ::= p | ¬ϕ | (ϕ∧ϕ) | Kiϕ (other Boolean connectives are defined as usual; belief
Biϕ := Ki(correcti → ϕ) and hopeHiϕ := correcti → Biϕ. The interpreted sys-
tems semantics is defined as usual with global states r(t) and r′(t′) indistinguish-
able for i iff ri(t) = r′i(t

′) (see Appendix, Defs. A.10–A.11 for the exact details).
Unless stated otherwise, the global history h ranges over G , and Xε ⊆

GEvents and Xi ⊆ GActionsi for each i ∈ A. The tuple X1, . . . , Xn is ab-
breviated XA. We use X[i,j] for the tuple Xi, . . . , Xj and X ′A for X ′1, . . . , X

′
n.

For instance, XA = X[1,n]. Further, Cε and C are sets of all environment and
joint protocols respectively.

3 Synchronous Agents

Synchronous agents, i.e., agents who have access to a global clock that can be
used to synchronize actions, is a common type of distributed systems. All cor-
rect agents perform their actions at the same time here, with the time between
consecutive actions left arbitrary and bearing no relation with message delays
(except for lock-step synchronous agents, see Sect. 5). A natural malfunction for
such an agent is losing synch with the global clock, however, so byzantine syn-
chronous agents can err by both lagging behind and running ahead of the global
clock. We implement this feature by means of synced rounds: correct agents
act in a round t½ iff the round is synced, whereas a faulty agent may skip a synced
round and/or act in between synced rounds. Note, however, that the agents do
not a priori know whether any given (past, current, or future) round is synced.

Definition 2. A round t½ is a synced round of a run r ∈ R iff βtgi (r) 6= ∅,
where βtgi (r) = βtεi (r) ∩ SysEventsi, for all i ∈ A. We denote the number of
synced rounds in h ∈ G by NSR (h).

In other words, a synced round requires from each agent i either go(i) or one of
two sync errors sleep (i) or hibernate (i). Conversely, the permission go(i) to act
correctly should only be given during synced rounds, which we implement via
the following event filter function:

Definition 3. The event filter function filterSε (h,Xε, XA) for the syn-
chronous agents extension outputs Xε\{go(i) | i ∈ A} if SysEventsj∩Xε = ∅
for some j ∈ A, or else leaves Xε unchanged.

Since it is important for correct agents to be aware of synced rounds, we require
agent protocols to issue the special internal action � whenever activated:

8 T. Schlögl et al.

Definition 4. The set of synchronous joint protocols is

C S := {(P1, . . . Pn) ∈ C | (∀i ∈ A)(∀hi ∈ Li)(∀D ∈ Pi (hi)) � ∈ D} .

The action � enables correct agents to distinguish between an active round re-
quiring no actions and a passive round with no possibility to act.2 The choices
behind our implementation of synchronicity will become clearer in Sect. 4.

Run modification [12] is a crucial technique for proving agents’ ignorance of
a fact, by creating an indistinguishable run falsifying this fact. First, we define
what it means for an agent to become byzantine. Given a run r and timestamp t,
a node (i, t′) ∈ A× T belongs to the set Failed (r, t) of byzantine nodes, i.e.,
agent i is byzantine in r by time t′, iff the global history r(t′) contains at least
one event from FEventsi.

Definition 5 (Run modifications). A function ρ : Rχ 7→ 2GActionsi×2GEventsi

is called an i-intervention for an agent-context χ and agent i ∈ A. A
joint intervention B = (ρ1, . . . , ρn) consists of i-interventions ρi for each
agent i ∈ A. An adjustment [Bt; . . . ;B0] (with extent t) is a sequence of joint
interventions B0, . . . , Bt to be performed at rounds 0½, . . . , t½ respectively.

An i-intervention ρ(r) = (X,Xε) applied to a round t½ of a given run r is in-
tended to modify the results of this round for i in such a way that βti (r′) = X and
βtεi (r′) = Xε in the artificially constructed new run r′. We denote aρ(r) := X
and eρ(r) := Xε. Accordingly, a joint intervention (ρ1, . . . , ρn) prescribes actions
βti (r′) = aρi(r) for each agent i and events βtε (r′) =

⊔
i∈A eρi(r) for the round in

question. Thus, an adjustment [Bt; . . . ;B0] fully determines actions and events
in the initial t+ 1 rounds of the modified run r′:

Definition 6. Let adj = [Bt; . . . ;B0] be an adjustment with Bm = (ρm1 , . . . , ρ
m
n)

for each 0 ≤ m ≤ t and each ρmi be an i-intervention for an agent-context
χ = ((Pε,G(0), τ, Ψ), P). The set R(τPε,P , r, adj) consists of all runs r′ obtained
from r ∈ Rχ by adjustment adj , i.e., runs r′ such that
(a) r′ (0) = r (0),
(b) r′i (t′ + 1) = updatei

(
r′i (t′) , aρt

′

i (r),
⊔
i∈A eρt

′

i (r)
)

for all i ∈ A and t′ ≤ t,
(c) r′ε (t′ + 1) = updateε

(
r′ε (t′) ,

⊔
i∈A eρt

′

i (r), aρt
′

1 (r), . . . , aρt
′

n (r)
)

for all t′≤ t,
(d) r′(T ′) τPε,P r′(T ′ + 1) for all T ′ > t.

The main interventions we use are as follows, where βtbi (r) = βtεi (r)∩BEventsi:

Definition 7. For i ∈ A and r ∈ R, the interventions CFreeze (r) := (∅,∅) and
BFreezei (r) := (∅, {fail (i)}) freeze agent i with and without fault respectively.

PFaketi (r) :=
(
∅, βtbi (r) ∪

{
fake (i, E) | E ∈ βt

εi
(r)
}
∪{

fake (i,noop 7→ A) | A ∈ βti (r)
}
t
{

sleep (i) | βtgi (r) ∈ {{go(i)}, {sleep (i)}}
}
t

{hibernate (i) | βtgi (r) /∈ {{go(i)}, {sleep (i)}}}
)

2 For the formal statement of this distinction, see Appendix, Lemma A.34.

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 9

turns all correct actions and events into indistinguishable byzantine events.

Until the end of this section, we assume that Pε ∈ Cε and PS ∈ C S are proto-
cols for the environment and synchronous agents, that χ = ((Pε,G (0), τS , R), PS)
is an agent-context where τS uses the synchronous event filter from Def. 3 and
the standard action filters from Def. 1, and that I = (Rχ, π) is an interpreted
system. We additionally assume that Pε makes a fixed agent i, called the “brain,”
gullible and all other agents j 6= i delayable and fallible.

Lemma 8 (Synchronous Brain-in-the-Vat Lemma). Consider the adjust-
ment adj = [Bt−1; . . . ;B0] with Bm = (ρm1 , . . . , ρ

m
n) where ρmi = PFakemi for the

“brain” i and ρmj ∈ {CFreeze,BFreezej} for other j 6= i, for m = 0, . . . , t−1. For

any run r ∈ Rχ, all modified runs r′ ∈ R
(
τSPε,PS , r, adj

)
are τSPε,PS -transitional

and satisfy the following properties:
1. “Brain” agent i cannot distinguish r from r′: r′i (m) = ri (m) for all m ≤ t.
2. Other agents j 6= i remain in their initial states: r′j (m) = r′j (0) for all m ≤ t.
3. Agent i is faulty from the beginning: (i,m) ∈ Failed (r′, t) for all 1 ≤ m ≤ t.
4. Other agents j 6= i are faulty by time t iff ρmj = BFreezej for some m.

Proof. The proof is almost identical to that of the case for asynchronous agents
from [12]. The only difference is in the proof that r′ is transitional. The gullibil-
ity/delayability/fallibility assumptions ensure that the protocols can issue the
sets of events prescribed by adjustment adj . By Def. 7, none of the interventions
PFaketi, CFreeze, or BFreezej prescribes a go before time t. Thus, all actions are
filtered out, and filterSε from Def. 3 does not remove any prescribed events. ut

Lemma 9. In the setting of Lemma 8, no hap o occurs correctly in any modified
run r′ ∈ R

(
τSPε,PS , r, adj

)
before time t, in other words, (I, r′,m) 6|= occurred (o)

for all m ≤ t.

Proof. Follows directly by unfolding Def. 7 of the interventions PFaketi, CFreeze,
and BFreezei and the definition of occurred (o) on p. 6. ut

Theorem 10. If the agent-context χ is non-excluding, the “brain” i cannot know
(a) that any hap occurred correctly, i.e., I |= ¬Kioccurred (o) for all haps o;
(b) that it itself is correct, i.e., I |= ¬Kicorrecti;
(c) that another agent j 6= i is faulty, i.e., I |= ¬Kifaultyj;
(d) that another agent j 6= i is correct, i.e., I |= ¬Kicorrectj.

Proof. We need to show that all these knowledge statements are false at (I , r, t)
for any r ∈ Rχ and any t ∈ T.

For t > 0, consider adj from Lemma 8 for this t. It is possible to pick
one modified run r′ ∈ R

(
τSPε,PS , r, adj

)
because χ is non-excluding. “Brain” i

cannot distinguish r(t) from r′(t) by Lemma 8.1. For Statement (a), we have
(I, r′, t) 6|= occurred (o) by Lemma 9. For Statement (b), (I, r′, t) 6|= correcti by
Lemma 8.3. For Statement (c), we have (I, r′, t) 6|= faultyj if all ρmj = CFreeze.

Finally, for Statement (d), we have (I, r′, t) 6|= correctj if ρ0j = BFreezej .

10 T. Schlögl et al.

It remains to consider the case of t = 0. Here, (I, r, 0) 6|= occurred (o) and
(I, r, 0) 6|= faultyj trivially for the run r itself, which completes the argument
for Statements (a) and (c). However, since all agents are still correct at t = 0, for
Statements (b) and (d), we additionally notice “brain” i is delayable because it is
gullible. Since delaying i for the first round would prevent it from distinguishing
whether t = 0 or t = 1, the case of t = 0 is thereby reduced to the already
considered case of t > 0. ut

Remark 11. By contrast, it is sometimes possible for synchronous agents to learn
of their own defectiveness, i.e., I 6|= ¬Kifaultyi. This may happen, for instance,
if there is a mismatch between actions recorded in the agent’s local history and
actions prescribed by the agent’s protocol for the preceding local state.

While the above limitations of knowledge apply to both asynchronous [12]
and synchronous agents, as we just showed, synchronous agents do gain aware-
ness of the global clock in the following precise sense.

Definition 12. For all l ∈ N, we add the following definition of truth for special
propositional variables nsrl in interpreted systems I ′ = (R′, π) (for R′ ⊆ R):
(I ′, r, t) |= nsrl iff NSR (r(t)) = l.

Theorem 13. A synchronous agent k can always infer how many synced rounds
elapsed from the beginning of a run under the assumption of its own correctness,
i.e., for any run r ∈ Rχ and timestamp t ∈ T, we have (I, r, t) |= HknsrNSR(r(t)).

Proof. Since HknsrNSR(r(t)) = correctk → Kk

(
correctk → nsrNSR(r(t))

)
, we

need to show that (I, r′, t′) |= nsrNSR(r(t)) whenever rk(t) = r′k(t′) and agent k
is correct both at r(t) and r′(t′). It is not hard though tedious to prove that,
for a correct agent, the number of � actions in its local history is equal to the
number of synced rounds elapsed in the run. Thus, NSR (r(t)) is equal to the
number of �’s in rk(t) = r′k(t′), which, in turn, equals NSR (r′(t′)). ut

4 The Extension Framework

In this section, we present a glimpse into our modular extension framework,
which augments the asynchronous byzantine framework [12] and enables us to
implement and combine a variety of system assumptions and, consequently, ex-
tend the epistemic analysis akin to that just performed for synchronous agents.

Definition 14 (Extension). Let E α := (PPα, ISα, τα, Ψα) with nonempty
sets PPα ⊆ Cε × C , ISα ⊆ 2G (0), and Ψα ⊆ R and a transition template τα.
An agent-context χ = ((Pε,Gχ(0), τ, Ψ), P) is part of E α, denoted χ ∈ E α, iff
(Pε, P) ∈ PPα, Gχ(0) ∈ ISα, τ = τα, Ψ = Ψα, and Rχ 6= ∅. We call E α a
(framework) extension iff there exists an agent-context χ such that χ ∈ E α.

Extension combination. Combining extension requires combining their con-
stituent parts. Since allowable pairs of protocols, runs, and collections of ini-
tial states are restricted by an extension, combining two extensions naturally

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 11

means imposing both restrictions, i.e., taking their intersection. Combining the
respective transition templates imposed by these extensions, on the other hand,
warrants more explanation. Transition templates differ from each other only in
the filtering phase. Therefore, combining transition templates, in effect, means
combining their respective filter functions, which can be done in various ways.
In this section we discuss filter composition.

Definition 15 (Basic Filter Property). We call a function filterαε (filterαi
for i ∈ A) an event (action) filter function iff filterαε (h,Xε, XA) ⊆ Xε and
filterαi (XA, Xε) ⊆ Xi (for the exact function typification see Appendix, Def. A.1).

Definition 16. Given event (action) filter functions filterαε and filterβε (filterαi
and filterβi for the same i ∈ A), their filter composition is defined as

filterβ◦αε (h,Xε, XA) := filterβε (h, filterαε (h,Xε, XA) , XA) ,

filterβ◦αi (XA, Xε) := filterβi
(
X[1,i−1], filter

α
i (XA , Xε) , X[i+1,n], Xε

)
.

Definition 17. For two extensions E † = (PP†, IS †, τ †, Ψ†) with † ∈ {α, β}, we
define their composition E α◦β := (PPα ∩PPβ , ISα ∩ ISβ , τα◦β , Ψα ∩Ψβ), where
in τα◦β the filters of τα and τβ are combined via filter composition (resulting in

filterα◦βε and filterα◦βi for each i ∈ A).

Since such a combination E α◦β may not be a valid extension, we introduce
the notion of extension compatibility. Informally, extensions are compatible if
their combination can produce runs (see Appendix, Def. A.12 for the details).

We recall the definition of the conventional (trace-based) safety properties.

Definition 18. Let PRtrans := {r(t) | r ∈ R, t ∈ T} ⊆ G . A nonempty set
S′ ⊆ R t PRtrans is a safety property if

(I) S′ is prefix-closed in that
– r(t) ∈ S′ implies that r(t′) ∈ S′ for t′ ≤ t and
– r′ ∈ S′ implies that r′(t′′) ∈ S′ for all t′′ ∈ T;

(II) S′ is limit-closed, i.e., r(t) ∈ S′ for all t ∈ T implies that r ∈ S′.

For the formal reasoning that any property Pα ⊆ R can be written as in-
tersection of a safety and liveness property, see Appendix, Defs. A.16 and A.18
and Lemmas A.17 and A.19. Since safety properties based on traces are inconve-
nient for reasoning on a round by round basis, we introduce an equivalent safety
property representation, better suited for this task. The fact that our alterna-
tive safety property definition is indeed equivalent to the trace safety property
representation, follows from Appendix, Def. A.22 and Lemma A.33.

Definition 19. An operational safety property S is defined as a function

S : PRtrans → 22
GEvents×2GActions1×...×2GActionsn

, which satisfies the following two
conditions, called operational safety property attributes. ([] represents the empty
sequence.)
1. (∃h ∈ PRtrans) hε = [] ∧ S(h) 6= ∅;

12 T. Schlögl et al.

2. (∀h ∈ PRtrans) hε 6= [] →((
(∃h′ ∈ PRtrans)(∃X ∈ S(h′)) h = update (h′, X)

)
↔ S(h) 6= ∅

)
.

The set of all operational safety properties is denoted by O.

Informally, Condition 1 means that there exists at least one safe initial state.
Condition 2 means that every non-initial state is safely extendable if and only if it
is safely reachable. From this point on, whenever we refer to a safety property, we
mean the operational safety property (the trace safety property representation
can always be retrieved if desired). We have discovered that downward closure
of the safety property of an extension greatly improves its composability. For-
tunately, it turned out that a few real-life safety properties (e.g., time-bounded
communication, at-most-f byzantine agents) are, in fact, downward closed.

Definition 20. A safety property S is downward closed iff for all h ∈ PRtrans,
(Xε, XA) ∈ S(h), X ′ε ⊆ Xε, and X ′i ⊆ Xi for i ∈ A, we have (X ′ε, X

′
A) ∈ S(h).

Implementation classes. According to Def. 14, specific system assumptions
can be implemented via extensions using a combination of altering the set of
environment protocols, set of agent protocols, event/action filter functions, and
the admissibility condition. One crucial question arises: if a particular property
could be implemented using different combinations of these mechanisms, which
one of them should be favored? The answer to this question is informed by our
goal to construct extensions in the most modular and composable manner. In-
deed, while the compatibility of two extensions guarantees their composition to
produce runs, these runs may violate the safety property of one of the extensions,
thereby defying the purpose of their combination. Here are two examples:

Example 21. A necessary event whose presence is ensured by the protocol restric-
tions of one extension may be removed by the event filter of the other extension.

Example 22. Consider composing filterBε from [12], the causal filter that re-
moves any receive event without a matching send (correct or fake) (see (A.1) for
the formal definition), with the synchronous agents filter filterSε (see Def. 3). If
filterSε is applied last, it may remove some go(i) event, preventing agent i from
sending a message necessary to support the causality of some receive event. Thus,
one must first apply filterSε , followed by filterBε .

Therefore, in this section, we provide a classification of extension implementa-
tions, which we call implementation classes, in order to analyze their com-
posability and answer our posed question.

Definition 23. Implementation classes are sets of extensions presented in
Table 1, where the name of the implementation class is stated in the leftmost col-
umn and parts manipulated and properties satisfied by this extension are marked
by “ x” in its row. Note that the last seven classes are subsets of other classes. We
consider them separately due to their altered attributes regarding composability.
The set of all implementation classes is denoted by I .3

3 For a detailed definition see Appendix, Def. A.35.

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 13

Table 1. Implementation classes

I
admiss.

condition
initial
states

joint
protocols

environ.
protocols

arbitrary
event
filter

standard
action
filters

arbitrary
action
filters

downward
closed

monotonic
filters

Adm x x

JP x x x

JP −AFB x x x x

EnvJP x x x x

EnvJP −AFB x x x x x

EvFJP x x x x

EvFJP −AFB x x x x x

EvFEnvJP x x x x x

EvFEnvJP −AFB x x x x x x

Others x x x x x x

JPDC x x x x

EnvJPDC x x x1 x1 x

EvFJPDC x x x1 x1 x

EvFEnvJPDC x x x1 x1 x1 x

OthersDC x x x1 x1 x1 x1 x

EvFEnvJPDC mono x x x1 x1 x1,2 x x

OthersDC mono x x x1 x1 x1,2 x1,2 x x
1) such that the extension’s safety property remains downward closed
2) such that the extension’s filters are monotonic

To describe implementation class composability, we introduce the forth
and reverse composability relations.

Definition 24. Two implementation classes ICα, ICβ ∈ I are forth (re-
verse) composable iff for all extensions E α ∈ ICα and E β ∈ ICβ compatible
with respect to forth (reverse) composition α ◦ β (β ◦ α), the extension E α◦β

(E β◦α) adheres to the safety property Sβ of E β.4

Our synchronous agents introduced in Sect. 3 correspond to the following
extension from the class EvFJP−AFB:

Definition 25. We denote by E S :=
(
Cε × C S , 2G (0) \ {∅}, τS , R

)
the syn-

chronous agents extension, where the transition template τS uses the syn-
chronous agents event filter and the standard action filters.

The entries in Table 2 are to be read as follows supposing x is the content of the
entry, LC is the implementation class to the left and TC is the implementation
class on the top:

– x = c means that LC is both forth and reverse composable with TC.
– x = f means that LC is forth composable with TC.
– x = r means that LC is reverse composable with TC.
– An empty entry means that LC can generally not be safely combined with
TC (we do not have a positive result stating the opposite).

4 Table 2 states our composability results for various implementation class combina-
tions.

14 T. Schlögl et al.

Table 2. Composability matrix of implementation classes

Adm JP
Env
JP

EvF
JP

EvF
Env
JP

JP -
AFB

Env
JP -
AFB

EvF
JP -
AFB

EvF
Env
JP -
AFB

Oth
ers

JP

DC

Env
JP

DC

EvF
JP

DC

EvF
Env
JP

DC

Oth
ers

DC

EvF
Env
JP

DC
mono

Oth
ers

DC
mono

Adm c c c c c c c c c c c c c c c c c

JP c c c c c c c c c c c c c c c c c

EnvJP c c c c c c c c c c c c c c c c c

EvFJP c c r c r c c c f f c c

EvFEnvJP c c r c r c c c f f c c

JP −AFB c c c c c c c c c f c c

EnvJP −AFB c c c c c c c c c f c c

EvFJP −AFB c c r c c c f f c c

EvFEnvJP −AFB c c r c c c f f c c

Others c c c c f f c c

JPDC c c c c c c c c c c c c c c c c c

EnvJPDC c c c c c c c c c c c c c c c c c

EvFJPDC c c r c r c c c f f c c

EvFEnvJPDC c c r c r c c c f f c c

OthersDC c c c c f f c c

EvFEnvJPDC mono c c r c r c c c f f c c

OthersDC mono c c c c f f c c

5 Lock-step Synchronous Agents

In lock-step synchronous distributed systems [15], agents act synchronously in
communication-closed rounds. In each such round, every correct agent sends a
message to every agent, which is received in the same round, and finally processes
all received messages, which happens simultaneously at all correct agents. Thus,
agents are not only synchronous, but additionally their communication is reli-
able, broadcast, synchronous (and causal). Our lock-step round extension com-
bines 5 different extensions corresponding to the aforementioned properties: the
(i) byzantine agents [12], (ii) synchronous agents extension from Def. 25, (iii) reli-
able communication extension ensuring that every sent message is eventually de-
livered, (iv) synchronous communication extension ensuring that every message
is either received instantaneously or not at all, and (v) broadcast communication
extension ensuring that every correctly sent message is sent to all agents.5

Since, by Lemma 8, even synchronous agents can be fooled by their own
(faulty) imagination, it is natural to ask whether a brain-in-a-vat scenario is
still possible in the more restricted lock-step synchronous setting. The proof of
the possibility of the brain-in-a-vat scenario from Lemma 8 in an asynchronous
setting provided in [12] suggests this not to be the case. However, by consid-
ering extension combinations more closely and in more detail we were able to
implement such a scenario despite the additional restrictions. The issue is that
the i-intervention PFaketi from Def. 7 makes it possible for byzantine actions
of the dreaming “brain” to affect other agents. This possibility becoming a cer-
tainty due to the more reliable communication of lock-step synchronous agents

5 Formal definitions for (i), (iii), (iv), (v) can be found in Appendix, starting from
Def. A.41.

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 15

is the obstacle preventing the complete isolation of the brain. This effect can be
avoided by modifying PFaketi to make all byzantine actions entirely imaginary.
This new i-intervention BPFaketi is obtained from Def. 7 by replacing βtbi (r) in
the modified events with:{

fake (i, E) | fake (i, E) ∈ βtbi (r)
}
∪{

fake (i,noop 7→ A) | (∃A′ ∈ GActionsi t {noop})fake (i, A′ 7→ A) ∈ βtbi (r)
}
.

(The full reformulation of Lemma 8 for this case with a short proof can be found
in Appendix, Lemma A.65.) Therefore, even perfect clocks and communication-
closed rounds do not exclude the “brain-in-a-vat” scenario, with the consequence
that most (negative) introspection results for synchronous systems also hold for
lock-step synchronous systems:

Theorem 26. Replacing PFaketi with BPFaketi (r) in Lemma 8 extends the lat-
ter’s “brain-in-the-vat” properties to lock-step synchronous system.

But besides the fact that our lock-step round extension was instrumental
for identifying the subtle improvements in implementing the brain-in-the-vat
scenario, it does have positive consequences for the fault-detection abilities of
the agents as well: using a weaker epistemic notion of the hope modality H, we
have shown that in a lock-step synchronous context it is possible to design agent
protocols to detect faults of other agents.

Theorem 27. There exists an agent context χ ∈ E LSS , where χ =
(
(P

SCA2
ε ,

G(0), τB◦S ,EDelA2), P̃SMCBCh
)
, and a run r ∈ Rχ, such that for agents i, j ∈ A,

where i 6= j, some timestamp t ∈ N, and a χ-based interpreted system I =
(Rχ, π)

(I , r, t) |= Hifaultyj .

Proof. See Appendix, Theorem 68.

6 Conclusions

We substantially augmented the epistemic reasoning framework for byzantine
distributed systems [12] with extensions, which allow to incorporate additional
system assumptions in a modular fashion. By instantiating our extension frame-
work for both synchronous and lock-step synchronous systems, we proved that
even adding perfect clocks and communication-closed rounds cannot circumvent
the possibility of a brain-in-the-vat scenario and resulting negative introspection
results, albeit they do enable some additional fault detection capabilities.

References

1. I. Ben-Zvi and Y. Moses. Agent-time epistemics and coordination. In
ICLA 2013, volume 7750 of LNCS, pages 97–108. Springer, 2013. doi:10.1007/

978-3-642-36039-8_9.

http://dx.doi.org/10.1007/978-3-642-36039-8_9
http://dx.doi.org/10.1007/978-3-642-36039-8_9

16 T. Schlögl et al.

2. I. Ben-Zvi and Y. Moses. Beyond Lamport’s happened-before: On time bounds and
the ordering of events in distributed systems. Journal of the ACM, 61(2:13), 2014.
doi:10.1145/2542181.

3. A. Castañeda, Y. A. Gonczarowski, and Y. Moses. Unbeatable consensus. In
DISC 2014, volume 8784 of LNCS, pages 91–106. Springer, 2014. doi:10.1007/

978-3-662-45174-8_7.
4. C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine

environment: Crash failures. Information and Computation, 88:156–186, 1990.
doi:10.1016/0890-5401(90)90014-9.

5. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

6. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32:374–382, 1985. doi:

10.1145/3149.214121.
7. Y. A. Gonczarowski and Y. Moses. Timely common knowledge. In TARK XIV,

pages 79–93, 2013. URL: https://arxiv.org/abs/1310.6414.
8. G. Goren and Y. Moses. Silence. In PODC ’18, pages 285–294. ACM, 2018.

doi:10.1145/3212734.3212768.
9. J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed

environment. Journal of the ACM, 37:549–587, 1990. doi:10.1145/79147.79161.
10. J. Y. Halpern, Y. Moses, and O. Waarts. A characterization of eventual Byzan-

tine agreement. SIAM Journal on Computing, 31:838–865, 2001. doi:10.1137/

S0097539798340217.
11. R. Kuznets, L. Prosperi, U. Schmid, and K. Fruzsa. Causality and epistemic

reasoning in byzantine multi-agent systems. In TARK 2019, volume 297 of EPTCS,
pages 293–312, 2019. doi:10.4204/EPTCS.297.19.

12. R. Kuznets, L. Prosperi, U. Schmid, and K. Fruzsa. Epistemic reasoning with
byzantine-faulty agents. In FroCoS 2019, volume 11715 of LNCS, pages 259–276.
Springer, 2019. doi:10.1007/978-3-030-29007-8_15.

13. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21:558–565, 1978. doi:10.1145/359545.359563.

14. L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4:382–401, 1982. doi:10.

1145/357172.357176.
15. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
16. Y. Moses and M. R. Tuttle. Programming simultaneous actions using common

knowledge: Preliminary version. In FOCS 1986, pages 208–221. IEEE, 1986. doi:
10.1109/SFCS.1986.46.

17. Y. Moses and M. R. Tuttle. Programming simultaneous actions using common
knowledge. Algorithmica, 3:121–169, 1988. doi:10.1007/BF01762112.

http://dx.doi.org/10.1145/2542181
http://dx.doi.org/10.1007/978-3-662-45174-8_7
http://dx.doi.org/10.1007/978-3-662-45174-8_7
http://dx.doi.org/10.1016/0890-5401(90)90014-9
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/3149.214121
https://arxiv.org/abs/1310.6414
http://dx.doi.org/10.1145/3212734.3212768
http://dx.doi.org/10.1145/79147.79161
http://dx.doi.org/10.1137/S0097539798340217
http://dx.doi.org/10.1137/S0097539798340217
http://dx.doi.org/10.4204/EPTCS.297.19
http://dx.doi.org/10.1007/978-3-030-29007-8_15
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1109/SFCS.1986.46
http://dx.doi.org/10.1109/SFCS.1986.46
http://dx.doi.org/10.1007/BF01762112

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 17

A Appendix

Definition A.1. We define an event filter function

filterε : G × 2GEvents × 2GActions1 × · · · × 2GActionsn −→ 2GEvents .

In addition, we define action filter functions for agents i ∈ A

filteri : 2GActions1 × · · · × 2GActionsn × 2GEvents −→ 2GActionsi .

r (t)

Pn (rn (t))

. . .

P1 (r1 (t))

Pε (t)

Pn

P1

Pε

Xn

. . .

X1

Xε

adversary

adversary

adversary

αtn (r)

. . .

αt1 (r)

αtn (r)

. . .

αt1 (r)

Xε =
αtε (r)

global

global

βtn (r)

. . .

βt1 (r)

βtε (r) βtε (r)

filtern

filter1

filterε

rn (t+ 1)

. . .

r1 (t+ 1)

rε (t+ 1)

updaten

update1

updateε

βtεn (r)

βtε1 (r)

r (t+ 1)

|
t

| | | | |
t+ 1

Protocol phase Adversary phase Labeling phase Filtering phase Updating phase

Fig. 1. Details of round t½ of a τPε,P -transitional run r.

Definition A.2. The causal event filter returns the set of all attempted events
that are “causally” possible. For a set Xε ⊆ GEvents , sets Xi ⊆ GActionsi for
each agent i ∈ A, and a global history h = (hε, h1, . . . , hn) ∈ G , we define

filterBε (h,Xε, X1, . . . , Xn) := Xε\
{

grecv(j, i, µ, id) | gsend(i, j, µ, id) /∈ hε ∧

(∀A ∈ {noop} tGActionsi) fake (i, gsend(i, j, µ, id) 7→ A) /∈ hε ∧
(gsend(i, j, µ, id) /∈ Xi ∨ go(i) /∈ Xε) ∧

(∀A ∈ {noop} tGActionsi) fake (i, gsend(i, j, µ, id) 7→ A) /∈ Xε

}
(A.1)

Definition A.3. A history hi of agent i ∈ A, or its local state, is a non-
empty sequence hi = [λm, . . . , λ1, λ0] for some m ≥ 0 such that λ0 ∈ Σi and
∀k ∈ J1;mK we have λk ⊆ Hapsi. In this case m is called the length of history
hi and denoted |hi|. We say that a set λ ⊆ Hapsi is recorded in the history hi of
agent i and write λ ⊆ hi iff λ = λk for some k ∈ J1;mK. We say that o ∈ Hapsi
is recorded in the history hi and write o ∈ hi iff o ∈ λ for some set λ ⊆ hi.

Definition A.4. A history h of the system with n agents, or the global
state, is a tuple h := (hε, h1, . . . , hn) where the history of the environment
is a sequence hε = [Λm, . . . , Λ1] for some m ≥ 0 such that ∀k ∈ J1;mK we have

18 T. Schlögl et al.

Λk ⊆ GHaps and hi is a local state of each agent i ∈ J1;nK. In this case m is
called the length of history h and denoted |h| := |hε|, i.e., the environment
has the true global clock. We say that a set Λ ⊆ GHaps happens in the environ-
ment’s history hε or in the system history h and write Λ ⊆ hε iff Λ = Λk for some
k ∈ J1;mK. We say that O ∈ GHaps happens in the environment’s history hε
or in the system history h and write O ∈ hε iff O ∈ Λ for some set Λ ⊆ hε.

Definition A.5 (Localization function). The function σ : 2GHaps −→ 2Haps

is defined as follows

σ
(
X
)

:= local
((
X ∩GHaps

)
∪ {E | (∃i) fake (i, E) ∈ X} ∪

{A′ 6= noop | (∃i)(∃A) fake (i, A 7→ A′) ∈ X}
)
.

Definition A.6 (State update functions). Given h = (hε, h1, . . . , hn) ∈
G , a tuple of performed actions/events X = (Xε, X1, . . . , Xn) ∈ 2GEvents ×
2GActions1 × . . . × 2GActionsn , we use the following abbreviation Xεi = Xε ∩
GEventsi for each i ∈ A. Agents i’s update function

updatei : Li × 2GActionsi × 2GEvents → Li

outputs a new local history from Li based on i’s actions Xi and environment-
controlled events Xε as follows:

updatei (hi, Xi, Xε) :=
hi if σ(Xεi) = ∅ and

Xεi ∩ SysEventsi /∈ {{go(i)}, {sleep (i)}}[
σ
(
Xεi tXi

)]
: hi otherwise

(A.2)

where : represents sequence concatenation. Similarly, the environment’s state

update function updateε : Lε×
(

2GEvents × 2GActions1 × . . .× 2GActionsn
)
→ Lε

outputs a new state of the environment based on X:

updateε (hε, X) := (Xε tX1 t . . . tXn) : hε

Thus, the global state is modified as follows:

update (h,X) :=
(
updateε (hε, X) , update1 (h1, X1, Xε) , . . . , updaten (hn, Xn, Xε)

)
Definition A.7. Let t ∈ T be a timestamp. A set S ⊂ GEvents of events is
called t-coherent if it satisfies the following conditions:

1. for any fake (i, gsend(i, j, µ, id) 7→ A) ∈ S, the GMI id = id(i, j, µ, k, t) for
some k ∈ N;

2. for any i ∈ A at most one event from SysEventsi is present in S;
3. for any i ∈ A and any locally observable event e at most one of global (i, t, e)

and fake (i, global (i, t, e)) is present in S;

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 19

4. for any grecv(i, j, µ, id1) ∈ S, no event of the form fake (i, grecv(i, j, µ, id2))
belongs to S for any id2 ∈ N;

5. for any fake (i, grecv(i, j, µ, id1)) ∈ S, no event of the form grecv(i, j, µ, id2)
belongs to S for any id2 ∈ N;

Definition A.8. For a context γ = (Pε,G(0), τ , Ψ) and a joint protocol P , we
define the set of runs weakly consistent with P in γ (or weakly consistent with
χ = (γ, P)), denoted Rwχ = Rw(γ,P), to be the set of τPε,P -transitional runs that
start at some global initial state from G(0):

Rw(γ,P) := {r ∈ R | r (0) ∈ G(0) and (∀t ∈ T) r (t+ 1) ∈ τPε,P (r (t))}

A run r is called strongly consistent, or simply consistent, with P in γ
(or with χ) if it is weakly consistent with P in γ and, additionally, satisfies
the admissibility condition: r ∈ Ψ . We denote the system of all runs consistent
with P in γ by R(γ,P) := Rw(γ,P) ∩ Ψ .

Definition A.9. An agent-context χ is non-excluding iff

Rχ 6= ∅ and (∀r ∈ Rwχ)(∀t ∈ T)(∃r′ ∈ Rχ)(∀t′ ≤ t) r′ (t′) = r (t′)

Definition A.10. For agent i ∈ A = J1;nK, the indistinguishability relation
∼i⊆ G 2 is formally defined by ∼i:= {(h, h′) | πi+1h = πi+1h

′}.

Definition A.11. Given an interpreted system I = (Rχ, π) an agent i ∈ A, a
run r ∈ Rχ, and a timestamp t ∈ T:

(I, r, t) |= p iff r(t) ∈ π(p)

(I, r, t) |= ¬ϕ iff (I, r, t) 6|= ϕ

(I, r, t) |= ϕ ∧ ϕ′ iff (I, r, t) |= ϕ and (I, r, t) |= ϕ′

(I, r, t) |= Kiϕ iff (∀r′ ∈ R′)(∀t′ ∈ T) (r′i(t
′) = ri(t) ⇒ (I, r′, t′) |= ϕ)

Definition A.12 (Compatibility). For a number of l ≥ 2 extensions E α1 ,
E α2 , ..., E αl we say the extensions E α1 , E α2 , ..., E αl are compatible w.r.t. to
some series of extension combinations ?1, ?2, ..., ?l−1

6 iff PPα
1 ∩. . .∩PPα

l 6= ∅,
ISα1 ∩ . . . ∩ ISαl 6= ∅, Ψα1 ∩ . . . ∩ Ψαl 6= ∅ and ∃χ ∈ E α1?1α2?2...?l−1αl .

Iff extensions E α1 , E α2 , ..., E αl (l ≥ 2) are compatible w.r.t. the extension
combination series ?1, ?2, ..., ?l−1, then E α1?1α2?2...?l−1αl is also an extension.

Definition A.13. We define PD t-coh
ε as the (downward closed) domain of all t-

coherent events: PD t-coh
ε := {Xε ∈ 2GEvents | Xε is t-coherent for some t ∈ T}.

Definition A.14. We define a liveness property as a subset L ⊆ R, where
L 6= ∅ ∧ (∀r ∈ R)(∀t ∈ T)(∃r′ ∈ L) r′(t) = r(t).

6 For some l′ ∈ N we use α ?l′ β or just ? to represent either forth composition (α ◦ β)
or reversed composition (β ◦α). Note that in our complete framework we distinguish
between further types of combinations.

20 T. Schlögl et al.

Informally, liveness says that every prefix r(t) of every run r can be extended in L.

Definition A.15. An extension E α adheres to a safety property S′ (resp. live-
ness property L) iff

⋃
χα∈Eα R

χα ⊆ S′ (
⋃
χα∈Eα R

χα ⊆ L).

Definition A.16. For a set Pα ⊆ R of transitional runs, where Pα 6= ∅,

L′α := {r ∈ R | (∃t ∈ T)(∀r′ ∈ Pα)(∀t′ ∈ T) r(t) 6= r′(t′)} (A.3)

Lα := Pα ∪ L′α. (A.4)

Lemma A.17. Lα is a liveness property.

Proof. Since Pα 6= ∅, Lα 6= ∅ as well by (A.4).
Take any finite prefix r(t) of a run r ∈ R for some timestamp t ∈ T. If r(t)

has an extension in Pα, then there exists a run r′ ∈ Pα, s.t. r(t) = r′(t). Since
by Def. A.16 Pα ⊆ Lα, r′ ∈ Lα as well. If r(t) has no extension in Pα, then by
Def. A.16 r ∈ L′α, thus r ∈ Lα.

Definition A.18. The smallest trace safety property containing P ⊆ R, for
P 6= ∅, is the prefix and limit closure of P , formally

S′(P) := {h ∈ PRtrans |(∃r ∈ P)(∃t ∈ T) r(t) = h}t
{r ∈ R | (∀t ∈ T)(∃r′ ∈ P) r(t) = r′(t)}.

The set of all trace safety properties is denoted by T .

Lemma A.19. Pα = Lα ∩S′(Pα), where S′(Pα) is the prefix and limit closure
of Pα (see Def. A.18).

Proof. Since Pα ⊆ S′(Pα) and Pα ⊆ Lα, it follows that Pα ⊆ Lα ∩ S′(Pα).
Hence it remains to show that Lα∩S′(Pα) ⊆ Pα. Assume by contradiction that
there exists a run r ∈ Lα ∩ S′(Pα), but r /∈ Pα, hence r ∈ Lα—specifically
r ∈ L′α—and r ∈ S′(Pα). Since r ∈ S′(Pα) (by prefix closure of S′(Pα)) for all
t′ ∈ T, r(t′) ∈ S′(Pα) as well. This implies (by limit closure of S′(Pα)) that for
all t ∈ T there must exist a run r′ ∈ Pα such that r(t) = r′(t). This however
contradicts that r ∈ L′α.

Definition A.20. A construction F ′ of an operational safety property from a
trace safety property S′ ∈ T is F (S′)(h) := {βt (r) | r ∈ S′ ∧ t ∈ T ∧ h = r(t)}.

Lemma A.21. F ′(S′) ∈ O for any S′ ∈ T .

Proof. Suppose by contradiction there exists some S′α ∈ T s.t. F ′(S′α) = Sα,
where Sα violates the first operational safety property attribute (1). This implies
(∀h ∈ PRtrans) hε 6= [] ∨ Sα(h) = ∅. Since by Def. A.18 Pα 6= ∅, we get
that there has to exist a run r ∈ S′α. Further, by prefix closure of S′α, we have
(∀t ∈ T) r(t) ∈ S′α, from which by universal instantiation we get that r(0) ∈ S′α.
Since S′α ⊆ R t PRtrans, r is transitional, hence rε(0) = [], from which by our

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 21

assumption Sα(r(0)) = ∅ follows. However, by Def. A.20 of construction F ′, it
follows that β0 (r) ∈ Sα(r(0)), thus Sα(r(0)) 6= ∅.

Next, suppose by contradiction there exists some S′α ∈ T s.t. F ′(S′α) = Sα,
where Sα violates the second operational safety property attribute (2). This
implies that there exists some h ∈ PRtrans s.t. hε 6= [] and

(((∃h′ ∈ PRtrans)(∃X ∈ Sα(h′))h = update (h′, X)) ∧ Sα(h) = ∅)∨ (A.5)

(((∀h′′ ∈ PRtrans)(∀X ′ ∈ Sα(h′′))h 6= update (h′′, X ′)) ∧ Sα(h) 6= ∅). (A.6)

Suppose (A.5) is true. This implies that there exists some h′ ∈ PRtrans and
some X ∈ Sα(h′) such that h = update (h′, X). By Def. A.20 of F ′ there exists
a run r ∈ S′α and a timestamp t ∈ T s.t. r(t) = h′ and X = βt (r). By
transitionality of r and Def. A.6 of update r(t+ 1) = h. Again by Def. A.20, we
have βt+1 (r) ∈ Sα(h), hence Sα(h) 6= ∅ and we conclude that (A.5) is false.

Suppose (A.6) is true. This implies by Def. A.20 that there exists a run r ∈
S′α and timestamp t ∈ T\{0}, where h = r(t), since r is transitional and hε 6= [].
Further we get that βt−1 (r) ∈ Sα(r(t−1)). Thus by Def. A.6 of update, we have
r(t) = update

(
r(t− 1), βt−1 (r)

)
and we conclude that (A.6) is false as well.

Definition A.22. We define F : T 7→ O, where for any S′ ∈ T we have
F (S′) := F ′(S′), for F ′ from Def. A.20, which is indeed a mapping from T
to O by Lemma A.21.

Lemma A.23. F from Def. A.22 is injective.

Proof. Suppose by contradiction that the opposite is true: there are S′α, S′β ∈ T
s.t. S′α 6= S′β , but F (S′α) = F (S′β). Since S′α 6= S′β , either
1 w.l.o.g. there exists some history h ∈ S′α s.t. h /∈ S′β or
2 w.l.o.g. there exists some run r ∈ S′α s.t. r /∈ S′β . We show that this implies 1.

Suppose by contradiction that there does not exist some h ∈ S′α s.t. h /∈ S′β ,
meaning (∀h ∈ S′α) h ∈ S′β . By limit closure of S′β however it follows that
r ∈ S′β , hence there has to exist a history h ∈ S′α such that h /∈ S′β .

Therefore, we can safely assume 1, i.e., w.l.o.g. that there exists some h ∈ S′α
s.t. h /∈ S′β . By Def. A.22 of F , we get that F (S′β)(h) = ∅, as otherwise there
would exist a run r′ ∈ S′β and time t′ ∈ T s.t. r′(t′) = h, from which by prefix
closure of S′β it would follow that h ∈ S′β . Since S′α is the prefix closure of some
non-empty set Pα ⊆ R by Def. A.18, we get that there exists some run r ∈ S′α
and time t ∈ T s.t. r(t) = h, additionally by Def. A.22 of F , βt (r) ∈ F (S′α)(h).
Therefore F (S′α) 6= F (S′β) and we are done.

Definition A.24. For some arbitrary S ∈ O, we define

S̃′0
S

:= R (A.7)

S̃′t
S

:= S̃′t−1
S
\ {r ∈ R | βt−1 (r) /∈ S(r(t− 1))} (A.8)

S̃′∞
S

:= lim
t′→∞

S̃′t′
S

(A.9)

S̃′
S

:= S̃′∞
S
t {h ∈ PRtrans | (∃r ∈ S̃′∞

S
)(∃t ∈ T) h = r(t)}. (A.10)

22 T. Schlögl et al.

Note that the limit in (A.9) exists, as by (A.8) the set S̃′t
S

is non-increasing in t.

Lemma A.25. For S̃′m
S̃

(for m ∈ T \ {0} and S̃ ∈ O) from Def. A.24, it holds

that S̃′m
S̃

= {r ∈ R | (∀t < m) βt (r) ∈ S̃(r(t))}.

Proof. By induction:
Induction Hypothesis:

S̃′m
S̃

= {r ∈ R | (∀t < m) βt (r) ∈ S̃(r(t))}. (A.11)

Base Case: For m = 1 by Def. A.24 it follows that

S̃′1
S̃

= R \ {r ∈ R | β0 (r) /∈ S̃(r(0))} = {r ∈ R | β0 (r) ∈ S̃(r(0))}.

Induction Step: Suppose the induction hypothesis (A.11) holds for m, but by
contradiction does not hold for m+ 1. There are two cases:

1. There exists a run r′ ∈ S̃′m+1

S̃

s.t. r′ /∈ {r ∈ R | (∀t < m + 1) βt (r) ∈
S̃(r(t))}. This implies that there exists some timestamp t′ < m + 1 s.t.

βt
′
(r′) /∈ S̃(r′(t′)). We distinguish two cases:

(a) t′ = m: Then r′ ∈ {r ∈ R | βm (r) /∈ S̃(r(m))}. Hence by Def. A.24 of

S̃′m+1

S̃

, r′ would have been removed.
(b) t′ < m: This directly contradicts the induction hypothesis (A.11), as

r′ /∈ S̃′t′+1

S̃
and S̃′m+1

S̃

⊆ S̃′t′+1

S̃
.

2. There exists a run r′ ∈ {r ∈ R | (∀t < m + 1) βt (r) ∈ S̃(r(t))} s.t. r′ /∈

S̃′m+1

S̃

. We distinguish two cases regarding at which step r has been removed:

(a) r′ ∈ S̃′m
S̃

: Then r′ ∈ {r ∈ R | βm (r) /∈ S̃(r(m))}. This implies that

βm (r′) /∈ S̃(r′(m)) contradicting r′ ∈ {r ∈ R | (∀t < m + 1) βt (r) ∈
S̃(r(t))}.

(b) r′ /∈ S̃′m
S̃

: This directly contradicts the induction hypothesis (A.11), thus
concluding the induction step.

Lemma A.26. For S̃′∞
S

from Def. A.24 it holds that

S̃′∞
S

= {r ∈ R | (∀t ∈ T) βt (r) ∈ S(r(t))}

Proof. Follows from Lemma A.25 and Def. A.24.

Lemma A.27. For S̃′
S

, from Def. A.24, where S ∈ O, it holds that S̃′
S
∈ T ,

i.e. S̃′
S

is a trace safety property.

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 23

Proof. From Def. A.24, particularly (A.9) and (A.10), it follows that S̃′
S

is the

prefix and limit closure of S̃′∞
S

.

Lemma A.28. The state update function—update—from Def. A.6 is injective.

Proof. Recall that according to Def. A.6 update and its constituent parts are

defined for h ∈ G , i ∈ A and X ∈ 2GEvents × 2GActions1 × . . .× 2GActionsn as

update (h,X) :=
(
updateε (hε, X) , update1 (h1, X1, Xε) , . . . , updaten (hn, Xn, Xε)

)
(A.12)

updatei (hi, Xi, Xε) :=

{
hi if σ(Xεi) = ∅ and unaware(i,Xε)[
σ
(
Xεi tXi

)]
: hi otherwise

(A.13)

updateε (hε, X) := (Xε tX1 t . . . tXn) : hε. (A.14)

Suppose by contradiction that update is not injective, i.e., update
(
h1, X1

)
=

update
(
h2, X2

)
for some (h1, X1) 6= (h2, X2) ∈ G ×2GEvents ×2GActions1× . . .×

2GActionsn . We distinguish the following cases:
1. X1 6= X2: By (A.14) X1 : h1ε 6= X2 : h2ε , as irrespective of h1 and h2

the two resulting histories have different suffixes (of size one) X1 and X2

(recall that by Defs. A.3 and A.4 the environment and the agent histories
are sequences of sets).

2. h1ε 6= h2ε : If X1 6= X2 it follows from case (1) that X1 : h1ε 6= X2 : h2ε .
Else if X1 = X2: if further |h1ε | = |h2ε | then the two resulting histories now
have the same suffix X1, however still different prefixes h1ε and h2ε .
Otherwise if w.l.o.g. |h1ε | > |h2ε |, then |X1 : h1ε | > |X1 : h2ε | and we are done.

3. h1i 6= h2i (for some i ∈ A): if
– X1 6= X2: follows from case (1)
– X1 = X2: either updatei

(
h1i , X

1
i , X

1
ε

)
= h1i or updatei

(
h2i , X

1
i , X

1
ε

)
=

h2i , since h1i 6= h2i we conclude that the resulting (local) histories are
different, or

updatei
(
h1i , X

1
i , X

1
ε

)
=
[
σ
(
X1
εi tX

1
i

)]
: h1i

updatei
(
h2i , X

1
i , X

1
ε

)
=
[
σ
(
X1
εi tX

1
i

)]
: h2i .

Suppose that |h1i | = |h2i |. It follows that the two resulting (local) his-

tories have matching suffixes (
[
σ
(
X1
εi t X

1
i

)]
), however different pre-

fixes. If on the other hand w.l.o.g. |h1i | > |h2i |, it also follows that∣∣[σ(X1
εi t X

1
i

)]
: h1i

∣∣ > ∣∣[σ(X1
εi t X

1
i

)]
: h2i

∣∣, hence they cannot be
the same and we are done.

Lemma A.29. Given an operational safety property S ∈ O, a transitional run
r ∈ R and timestamps t, t′ ∈ T, where t′ ≥ t, if S(r(t)) = ∅, then S(r(t′)) = ∅.

Proof. By induction over t′ ≥ t.
Induction Hypothesis: For t′ ≥ t and S ∈ O it holds that if S(r(t)) = ∅,
then S(r(t′)) = ∅.

24 T. Schlögl et al.

Base Case for t′ = t: it trivially follows that S(r(t′)) = S(r(t)) = ∅.
Induction Step for t′ → t′ + 1: Since the state update function is injective by
Lemma A.28 and run r is transitional, the only way to achieve the prefix r(t′ +
1) via state update is by update(r(t′), βt

′
(r)). However since by the induction

hypothesis S(r(t′)) = ∅, it follows by the second operational safety property
attribute (2) that S(r(t′ + 1)) = ∅ as well.

Lemma A.30. For any h ∈ PRtrans and operational safety property S ∈ O it
holds that (∃r ∈ R)(r(|h|) = h) ∧ ((∀t ∈ T) S(r(t)) 6= ∅ whenever S(h) 6= ∅.

Proof. Assuming that S(h) 6= ∅ we construct r as follows: Since h ∈ PRtrans,
h = r′(|h|) for some r′ ∈ R. Contraposition of the statement of Lemma A.29
gives for t ≤ |h|, if S(r′(|h|)) 6= ∅ then S(r′(t′)) 6= ∅. Hence for t ≤ |h| we define
r(t) := r′(t).

Next assume an order on the set Z := 2GEvents ×2GActions1× . . .×2GActionsn

and let X̃1(S) be the first element of some subset S ⊆ Z according to this order.

For t > |h| we define r(t) := update(r(t− 1), X̃1(S(r(t− 1)))). It remains to
show that S(r(t−1)) can never be empty. The proof is by induction over t > |h|.
Induction Hypothesis: S(r(t− 1)) 6= ∅.
Base Case for t = |h| + 1: We get that S(t) = S(|h|), which is not empty by
assumption.
Induction Step for t→ t+1: Suppose the induction hypothesis holds for t. Since
r(t) is defined as update(r(t− 1), X̃1(S(r(t− 1)))) and it holds that r(t − 1) ∈
PRtrans and X̃1(S(r(t − 1))) ∈ S(r(t − 1)), by the second operational safety
property attribute (2) and semantics of ⇐⇒ we get that also S(r(t)) 6= ∅, thus
completing the induction step.

Lemma A.31. For an operational safety property S ∈ O, transitional run
r ∈ R, and timestamp t ∈ T \ {0}, S(r(t)) 6= ∅ implies βt−1 (r) ∈ S(r(t− 1)).

Proof. If S(r(t)) 6= ∅, by the operational safety property attribute 2, r(t) has to
be safely reachable, meaning (∃h ∈ PRtrans)(∃X ∈ S(h)) r(t) = update (h,X).
By injectivity (Lemma A.28) of update (Def. A.6) it only maps to the prefix r(t)
for h = r(t− 1) and X = βt−1 (r). Hence βt−1 (r) ∈ S(r(t− 1)).

Lemma A.32. F from Def. A.22 is surjective.

Proof. Suppose by contradiction that F is not surjective. This implies that there
exists some S ∈ O s.t. for all S′ ∈ T , F (S′) 6= S.

To arrive at a contradiction, we use the trace safety property S̃′
S

from

Def. A.24. This is safe to use, as by Lemma A.27 S̃′
S
∈ T . There are two

cases causing F (S̃′
S

) 6= S:

1. There is a run r′ ∈ S̃′
S

and timestamp t′ ∈ T s.t. βt
′
(r′) /∈ S(r′(t′)). Hence,

r′ ∈ {r ∈ R | βt′ (r) /∈ S(r(t′))}, such that by (A.8) r′ /∈ S̃′t′+1

S
, from which

further by (A.9) and (A.10) r′ /∈ S̃′
S

follows, providing a contradiction.

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 25

2. There exists a prefix h ∈ PRtrans and some X ∈ S(h), but

h /∈ S̃′
S
. (A.15)

Since X ∈ S(h) by Lemma A.30 there exists a transitional run r ∈ R s.t.
r(|h|) = h and (∀t ∈ T) S(r(t)) 6= ∅. By Lemma A.31 we further get that
for any t ∈ T, if S(r(t)) 6= ∅, then βt−1 (r) ∈ S(r(t− 1)). By Lemma A.26 it

follows that r ∈ S̃′∞
S

and by prefix closure (A.10) we finally get that h ∈ S̃′
S

contradicting (A.15).

Thus, by definition of our construction (A.7)–(A.9), F (S̃′
S

) = S.

Lemma A.33. F from Def. A.20 is bijective.

Proof. Follows from Lemma A.23 and A.32.

Lemma A.34. For the general asynchronous byzantine framework given two
τBPε,P -transitional runs r, r′ ∈ R and timestamps t, t′ ∈ T \ {0}, an agent i ∈ A
cannot distinguish
– a round t½ in run r, where a nonempty set of events Q ⊆ GEventsitBEventsi

was observed by i, but no go(i) occurred ⇒

go(i) /∈ βtgi (r), βti (r) = ∅, β
t

εi
(r) t βtbi (r) = Q

– from a round t′½ in run r′, where the same set of events Q was observed by
i, go(i) occurred, but the protocol prescribed the empty set (∅ ∈ Pi (r′(t′))),
which was chosen by the adversary ⇒

go(i) ∈ βt
′

gi (r′), βt
′

i (r′) = ∅, β
t′

εi
(r′) t βt

′

bi (r′) = Q.

Proof. This immediately follows from the definition of the update function (A.2),
as in this scenario (for ri(t+1) = [λm, . . . , λ1, λ0] and r′i(t

′+1) = [λ′m′ , . . . , λ
′
1, λ
′
0])

λm = λ′m′ = Q. ut

Definition A.35. We define the following implementation classes:

Adm The desired extension property is only implemented via an appropriate ad-
missibility condition Ψα ⊆ R. An extension E α ∈ Adm iff E α = (Cε ×
C , ISα, τN,N , Ψα).

JP The extension property is implemented via restricting the set of joint proto-
cols C . An extension E α ∈ JP iff E α = (Cε × C α, ISα, τN,N , Ψα).

JP−AFB An extension E α ∈ JP−AFB iff E α = (Cε×C α, ISα, τN,B , Ψα), where in
τN,B the filter functions filterNε and filterBi (for all i ∈ A) are used and
C α ⊂ C .

EnvJP The extension property is implemented via restricting the set of environment
protocols Cε possibly in conjunction with the set of joint protocols C . An
extension E α ∈ EnvJP iff E α = (PPα, ISα, τN,N , Ψα), where PPα ⊂ Cε ×
C and E α /∈ JP.

26 T. Schlögl et al.

EnvJP−AFB An extension E α ∈ EnvJP−AFB iff E α = (PPα, ISα, τN,B , Ψα), where
in τN,B the filter functions filterNε and filterBi (for all i ∈ A) are used,
PPα ⊂ Cε × C and E α /∈ JP−AFB.

EvFJP An extension E α ∈ EvFJP iff E α = (Cε×C α, ISα, τα,N , Ψα), where in τα,N

the filter functions filterαε and filterNi (for all i ∈ A) are used, C α ⊆ C
and E α /∈ JP.

EvFJP−AFB An extension E α ∈ EvFJP−AFB iff E α = (Cε × C α, ISα, τα,B , Ψα),
where in τα,B the filter functions filterαε and filterBi (for all i ∈ A) are
used, C α ⊆ C and E α /∈ JP−AFB.

EvFEnvJP An extension E α ∈ EvFEnvJP iff E α = (PPα, ISα, τα,N , Ψα), where in
τα,N the filter functions filterαε ⊂ filterNε and the neutral action filters
filterNi (for all i ∈ A) are used, PPα ⊂ Cε × C and E α /∈ EvFJP.

EvFEnvJP−AFB An extension E α ∈ EvFEnvJP−AFB iff E α = (PPα, ISα, τα,B , Ψα),
where in τα,B the filter functions filterαε ⊂ filterNε and the byzantine ac-
tion filters filterBi (for all i ∈ A) are used, PPα ⊂ Cε × C and E α /∈
EvFJP−AFB.

Others This class contains all remaining extension implementations including re-
strictions via arbitrary action filters filteri (for i ∈ A).
An extension E α ∈ Others iff it is not in any other class.

We list important subsets of these implementation classes, which we will treat
as individual implementation classes in their own right (see listing below):
– JPDC := {E α ∈ JP | Sα is downward closed}
– EnvJPDC := {E α ∈ EnvJP | Sα is downward closed}
– EvFJPDC := {E α ∈ EvFJP | Sα is downward closed}
– EvFEnvJPDC := {E α ∈ EvFEnvJP | Sα is downward closed}
– OthersDC := {E α ∈ Others | Sα is downward closed}
– EvFEnvJPDCmono := {E α ∈ EvFEnvJPDC | (∀i ∈ A) filterαi and filterαε

are monotonic for the domain PDt−coh
ε , 2GActions1 , . . . , 2GActionsn}.

– OthersDCmono := {E α ∈ OthersDC | (∀i ∈ A) filterαi and filterαε are

monotonic for the domain PDt−coh
ε , 2GActions1 , . . . , 2GActionsn}.

Lemma A.36. An agent i in a synchronous agents context executes its protocol
only during synced rounds, i.e., for every χ ∈ E S and r ∈ Rχ, go(i) ∈ βtgi (r) if
t½ is a synced round.

Proof. From Defs. 2 and 3, it immediately follows that in a synchronous agents
context go(i) events can only ever occur during a synced round. ut

Lemma A.37. For a correct agent i, a τSPε,PS -transitional run r (where PS ∈
C S), some timestamp t′ ≥ 1, agent i’s local history ri(t

′) = hi = [λm, . . . , λ1, λ0]
(given the global history h = r(t′) ∈ G) and some round (t−1)½ (t′ ≥ t ≥ 1), there
exists some a ∈ Actionsi such that a ∈ λkt where λkt = σ

(
βt−1εi (r)t βt−1i (r)

)
if

and only if (t− 1)½ is a synced round.

Proof. From left to right. From Lemma A.36, we know that an agent can only
execute its protocol during synced rounds. Therefore, since agent i is assumed

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 27

to be correct and (t − 1)½ is a synced round, it follows that {go(i)} = βt−1gi (r)
(sleep(i) or hibernate(i) would make the agent byzantine). By (A.2) (the defini-
tion of the update function) and Def. 4 (the definition of the synchronous agents
joint protocols, which dictates that at least � has to be among the attempted
actions, hence the empty set can never be issued) an action a ∈ Actionsi such
that a ∈ λkt has to exist.

From right to left. Suppose there exists a ∈ Actionsi such that a ∈ λkt .
Since agent i is assumed to be correct, by Lemma A.36 agents only execute their
protocol during synced rounds and by the definition of the update function (A.2)
round (t− 1)½ has to be a synced round. ut

Lemma A.38. For any agent i ∈ A, any run r ∈ Rχ, where χ ∈ E S and any
timestamp t ∈ T, it holds that {go(i)} = βtgi (r) iff (∃A ∈ GActionsi) A ∈ βti (r).

Proof. This directly follows from Def. 4 of the synchronous agents joint protocol
and the standard action filter function 1. As no synchronous agents protocol
can prescribe the empty set, whenever an agent i receives a go(i) event during
some round t½, it will perform some action a ∈ Actionsi, as by t-coherence of the
environment protocol’s event sets, there can always only be one system event
present for any agent during one round. Similarly, if (∃A ∈ GActionsi) A ∈ βti (r)
by definition of the byzantine action filter, i must have gotten a go(i). ut

Corollary A.39. Lemma A.34 does not hold for runs r, r′ ∈ Rχ for χ ∈ E S.

Definition A.40. For i ∈ A, global history h ∈ G , we define the neutral
event and action filters (the weakest filters) as filterNε (h,Xε, XA) := Xε and
filterNi (XA, Xε) := Xi. The transition template using only the neutral filters is
denoted τN,N or τN .

A.1 Asynchronous Byzantine Agents

Definition A.41. We denote by E B := (Cε ×C , 2G (0) \ {∅}, τB , R) the asyn-
chronous byzantine agents extension.

Lemma A.42. E B ∈ EvFJP−AFB.

Proof. Follows from Defs. A.41 and 23.

A.2 Reliable Communication

In the reliable communication extension agents can behave arbitrarily. How-
ever the communication—the transmission of messages by the environment—is
reliable for a particular set of (reliable) channels, i.e., a message that was sent
through one of these (reliable) channels, is guaranteed to be delivered by the
environment in finite time. This also holds for the delivery of messages to and
from byzantine agents. Since a byzantine agent can always ”choose” to ignore any
messages it receives anyway, this does not restrict its byzantine power to exhibit
arbitrary behaviour. Formally, we define a set of (reliable) channels as C ⊆ A2.

The reliable communication property will be ensured by the admissibility
condition EDelC , which is a liveness property.

28 T. Schlögl et al.

Definition A.43 (Eventual Message Delivery).

EDelC =

{
r ∈ R

∣∣∣∣ ((gsend(i, j, µ, id) ∈ rε(t) ∨

(∃A ∈ {noop} tGActionsi) fake (i, gsend(i, j, µ, id) 7→ A) ∈ rε(t)
)
∧

(i, j) ∈ C
)
−→ (∃t′ ∈ N) grecv(j, i, µ, id) ∈ rε(t′)

} (A.16)

Definition A.44. We define by E RCC :=
(
Cε×C , 2G (0) \ {∅}, τN , EDelC

)
the

reliable communication extension.

A.3 Time-bounded Communication

We say that communication is time-bounded if for every channel and for every
message there is an upper-bound (possibly infinite) on the transmission time.
Since the transmission is not reliable a priori, the time-bounded communi-
cation extension only specifies the time window during which the delivery of a
message can occur. In order to gain flexibility, bounds can be changed depending
on the sending time and depending on the message too—for instance a byte of
data and picture will not have the same time bound. We encode these bounds
in an upper-bound structure defined as follows:

Definition A.45. For the first infinite ordinal number ω, agents (i, j) ∈ A2,
and the channel i 7→ j, we define the message transmission upper-bound for the
channel i 7→ j as follows δi 7→j : Msgs ×N→ N∪ {ω}. We define an upper bound
structure as ∆ :=

⋃
(i,j)∈A2 {δi7→j}.

Since, as we soon show, the time-bounded safety property is downward closed,
we implement it by restriction of the set of environment protocols.

Definition A.46. For an upper-bound structure ∆, we define the set of time-
bounded communication environment protocols as

C TC∆
ε := {Pε ∈ Cε | (∀t ∈ N)(∀Xε ∈ Pε(t))

grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ Xε → t′ + δi 7→j (µ, t′) ≥ t}. (A.17)

Definition A.47. For an upper-bound structure ∆

E TC∆ := (C TC∆
ε × C , 2G (0) \ {∅}, τN , R)

denotes the time-bounded communication extension.

Lemma A.48. STC∆ is downward closed.

Proof. Suppose that by contradiction STC∆ is not downward closed. This implies
X ′ /∈ STC∆(h) for some h ∈ G , X ∈ STC∆ , and X ′ ⊆ X. It immediately follows
that X ′ ⊂ X. Since in τN the neutral (event and action) filters are used we
further get that there are Pε ∈ C TC∆

ε and P ∈ C , Xε ∈ Pε(|h|), Xi ∈ Pi(hi)

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 29

for all i ∈ A, and X = Xε t X1 t · · · t Xn. Since the set of joint protocols is
unrestricted there exists some joint protocol P ′ ensuring that together with Pε,
Xε tX ′1 t · · · tX ′n ∈ STC∆(h) for all X ′i ⊆ Xi, i ∈ A. Therefore, we conclude
that the violation of X ′ has to be caused by some X ′ε ⊂ Xε = X tGEvents .

From X ∈ STC∆(h) we conclude that

grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ Xε → t′ + δi 7→j (µ, t′) ≥ |h|. (A.18)

By semantics of ”→” and since X ′ε ⊆ Xε we get(
grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ X ′ε

)
→
(
grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ Xε

)
. (A.19)

Using (A.19) in (A.18) we get(
grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ X ′ε

)
→
(
grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ Xε

)
→(

t′ + δi 7→j (µ, t′) ≥ |h|
)
.

(A.20)

Finally from (A.20) by transitivity of ”→” we get that(
grecv(j, i, µ, id(i, j, µ, k, t′)) ∈ X ′ε

)
→
(
t′ + δi 7→j (µ, t′) ≥ |h|

)
. (A.21)

Hence, we conclude that X ′ ∈ STC∆(h) and we are done.

Corollary A.49. E TC∆ ∈ EnvJPDC.

Proof. Follows from Def. A.47 and Lemma A.48.

A.4 Synchronous Communication

The Synchronous Communication extension guarantees for a set of syn-
chronous communication channels C ⊆ A2 that whenever a message is correctly
received, it has been sent during the same round. This means that it is a special
case of the time-bounded communication extension.

Definition A.50 (Synchronous Communication Environment Protocols).
We define the synchronous message delay as

δSCC
i7→j (µ, t) :=

{
0 if (i, j) ∈ C
ω otherwise

We define the synchronous communication upper bound structure ∆SCC as ∆SCC :=⋃
(i,j)∈A2{δSCC

i 7→j }.

C SCC
ε := C

TC
∆SCC

ε (A.22)

Definition A.51. We denote by E SCC :=
(
C SCC
ε × C , 2G (0) \ {∅}, τN , R

)
the

synchronous communication extension.

Lemma A.52. SSCC is downward closed.

Proof. Follows from Lemma A.48, as the synchronous communication extension
is just an instance of the time-bounded communication extension (A.22).

Corollary A.53. E SCC ∈ EnvJPDC.

Proof. Follows from Def. A.51 and Lemma A.52.

30 T. Schlögl et al.

A.5 Multicast Communication

In the multicast communication paradigm, each agent has several multicast
channels at its disposal and is restricted to sending messages using these partic-
ular channels. In this section, we provide a software based multicast, meaning
that only correct agents have to adhere to this behavior (further along we pro-
vide a hardware based multicast as well, where also byzantine agents are forced
to exhibit this multicast behavior).

First, we define a multicast communication problem. For each i ∈ A we
define a collection Mci of groups of agents it can send messages to.

Definition A.54. For each i ∈ A the set of available multicast channels is
Mci ⊆ 2A \ {∅}. The multicast communication problem is the tuple of
these collections of communication channels Ch = (Mc1, . . . ,Mcn).

We denote the set of recipients for the copy µk of a message µ that has been
sent according to some set X ⊆ Actions by RecX(µk) = {j | send(j, µk) ∈ X}.

Since we implement a software based multicast (and since we want our ex-
tensions to be modular) we use a restriction of the joint protocol to do so.

Definition A.55. For a multicast communication problem Ch, we define the
set of multicast joint protocols as

CMCCh = {(P1, . . . , Pn) ∈ C |(∀i ∈ A)(∀hi ∈ Li)(∀X ∈ Pi (hi))(∀µ ∈ Msgs)(∀k ∈ N)

RecX(µk) 6= ∅ → RecX(µk) ∈Mci}.
(A.23)

Definition A.56. For a multicast communication problem Ch, we set E MCCh :=(
Cε × CMCCh , 2G (0) \ {∅}, τN,B , R

)
to be the multicast communication ex-

tension where in τN,B the neutral event and the byzantine action filters are used
(for all i ∈ A).

An important special case of the multicast communication problem is the
broadcast communication problem, where each agent must broadcast each mes-
sage to all the agents:

Definition A.57. The broadcast communication extension E BC is a mul-
ticast communication extension E MCBCh for

BCh = ({A}, . . . , {A}︸ ︷︷ ︸
n

) (A.24)

E BC = (Cε × CMCBCh , 2G (0) \ {∅}, τN,B , R), where in τN,B the neutral event
filter and the byzantine action filters (for all i ∈ A) are used.

Corollary A.58. E MCCh ∈ JP−AFB.

Proof. Follows from Def. A.56.

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 31

Table A.1. filter dependencies in the lock-step synchronous agents extension

filter dependency removal

filterSε go(i), sleep(i), hibernate(i) go(i)

filterBε go(i), gsend(i, j, µ, id), fake (i, gsend(i, j, µ, id) 7→ A) grecv(j, i, µ, id)

filterBε filterSε

Fig. 2. Dependence graph for filterBε and filterSε

A.6 Lock-step Synchronous Agents

Table A.1 reveals that filterBε depends on go(i) events, which filterSε removes.
Thus, we have a dependence relation from filterBε to filterSε . filterBε removes
only correct receive events grecv(j, i, µ, id). filterSε is independent of such events,
hence, there is no dependence relation from filterSε to filterBε .

Figure 2 shows the final dependence graph. Since there is no circular depen-
dence, we can directly use the composition order given by the graph. This gives
us E B◦S = (Cε × C S , 2G (0) \ {∅}, τB◦S,B , R), where in τB◦S,B the event filter
is filterB◦Sε and the action filters result in filterBi for all i ∈ A (by idempo-
tence of the byzantine action filter function). Following the rest of the extension
combination guide finally leads to

E B◦S◦BC◦SCA2◦RCA2 =
(
C

SCA2
ε × (CMCBCh ∩ C S), 2G (0) \ {∅}, τB◦S,B ,EDelA2

)
. (A.25)

Lemma A.59. The extensions E B, E S, E SCA2 , E RCA2 , and E BC are compat-
ible (w.r.t. the composition B ◦ S ◦BC ◦ SCA2 ◦RCA2).

Proof. The only condition from Def. A.12 that does not trivially follow from the
definition of the extensions in question is whether there exists an agent context
χ, such that χ ∈ E B◦S◦BC◦SCA2◦RCA2 . Such a χ however can be easily con-
structed. Let χ =

(
(P ′ε ,G(0), τB◦S,B ,EDelA2), P ′

)
, where P ′ε only produces the

set containing the empty set and P ′ for every agent produces the set contain-
ing the set that only contains the action �, i.e., P ′ε(t) = {∅} for all t ∈ N and
P ′(h) = ({{�}}, . . . , {{�}}) for all h ∈ G . Note that this agent context is part of

the extension E B◦S◦BC◦SCA2◦RCA2 , as P ′ε ∈ C
SCA2
ε and P ′ ∈ (CMCBCh ∩ C S).

Lemma A.60. The extension E B◦S◦BC◦SCA2◦RCA2 satisfies all safety proper-
ties of its constituent extensions.

Proof. Follows from Table 2.

Finally, after having proved that the resulting extension E B◦S◦BC◦SCA2◦RCA2

satisfies all desired properties, we can define it as E LSS .

32 T. Schlögl et al.

Definition A.61. We define the lock-step synchronous agents extension to

be E LSS =
(
C

SCA2
ε × (CMCBCh ∩ C S), 2G (0) \ {∅}, τB◦S,B ,EDelA2

)
.

We will now add a few lemmas about properties, which the lock-step syn-
chronous agents extension inherits from the synchronous agents extension.

Lemma A.62. An agent i in a lock-step synchronous agents context executes its
protocol only during synced rounds, i.e., go(i) ∈ βtgi (r) iff t.5 is a synced round.

Proof. Lemma A.36 for the synchronous agents extension describes a property
of SS that by Lemma A.60, E LSS satisfies.

Lemma A.63. For a correct agent i, a τB◦S,B
P

SCA2
ε ,P SMCBCh

-transitional run r (where

P
SCA2
ε ∈ C

SCA2
ε and PSMCBCh ∈ C S ∩ CMCBCh), some timestamp t′ ≥ 1,

agent i’s local history ri(t
′) = hi = [λm, . . . , λ1, λ0] (given the global history

h = r(t′) ∈ G) and some round (t − 1)½ (t′ ≥ t ≥ 1), there exists some
a ∈ Actionsi such that a ∈ λkt where λkt = σ

(
βt−1εi (r) t βt−1i (r)

)
if and only if

(t− 1)½ is a synced round.

Proof. This again follows from Lemma A.37 for the synchronous agents ex-
tension, as the statement of this lemma is a safety property of E S and by
Lemma A.60, E LSS satisfies SS .

Lemma A.64. For any agent i ∈ A, any run r ∈ Rχ, where χ ∈ E LSS and any
timestamp t ∈ N it holds that go(i) ∈ βtgi (r)⇐⇒ (∃A ∈ GActionsi)A ∈ βti (r).

Proof. Analogous to the proof of Lemma A.38 for synchronous agents.

Lemma A.65 (Lock-step Synchronous Brain-in-the-Vat Lemma). Let
A = J1;nK be a set of agents with joint protocol PSMCBCh = (P1, . . . , Pn) ∈
(CMCBCh ∩ C S), let P

SCA2
ε ∈ C

SCA2
ε be the protocol of the environment, for

χ ∈ E LSS , where χ = ((P
SCA2
ε ,G (0), τB◦S,B , EDelC), PSMCBCh), let r ∈ Rχ, let

i ∈ A be an agent, let t > 0 be a timestamp and let adj = [Bt−1; . . . ;B0] be an
adjustment of extent t− 1 satisfying Bm = (ρm1 , . . . , ρ

m
n) for all 0 ≤ m ≤ t− 1

with ρmi = BPFakemi and for all j 6= i ρmj ∈ {CFreeze,BFreezej}. If the protocol

P
SCA2
ε makes
– agent i gullible,
– every agent j 6= i delayable and fallible if ρmj = BFreezej for some m,
– all remaining agents delayable,

then each run r′ ∈ R
(
τB◦S,B
P

SCA2
ε ,P SMCBCh

, r, adj
)

satisfies the following properties:

1. r′ ∈ Rχ.
2. (∀m ≤ t) r′i (m) = ri (m);
3. (∀m ≤ t)(∀j 6= i) r′j (m) = r′j (0);
4. (i, 1) ∈ Failed (r′, 1) and thus (i,m) ∈ Failed (r′,m′) for all m′ ≥ m > 0;
5. A (Failed (r′ (t))) = {i} ∪ {j 6= i | (∃m ≤ t− 1) ρmj = BFreezej};
6. (∀m < t) (∀j 6= i) βmεj (r′) ⊆ {fail (j)}. More precisely, βmεj (r′) = ∅ iff ρmj =

CFreeze and βmεj (r′) = {fail (j)} iff ρmj = BFreezej;

The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks 33

7. (∀m < t) βmεi (r′) \ βmfi (r′) = ∅;
8. (∀m < t)(∀j ∈ A) βmj (r′) = ∅.

Proof. The proof is (similar to Lemma 8) analogous to the original Brain-in-
the-Vat Lemma [12], since by Def. 7 of the interventions CFreeze, BFreezei, and
BPFaketi it holds that(

∀r′ ∈ R
(
τB◦S,B
P

SCA2
ε ,P SMCBCh

, r, adj
))

(∀j ∈ A)(∀m ∈ N s.t. 0 ≤ m < t)

go(j) /∈ βmεj (r′) ∧ β
m

εj
(r′) = ∅.

(A.26)

By Def. A.61 of the lock-step synchronous agents extension both its set of en-
vironment protocols and its admissibility condition from Def. A.43 only restrict
runs (respectively environment protocols) w.r.t. correct receive events (see (A.22)
and (A.17)). By (A.26) however correct events do not event occur in any such
runs r′. Furthermore the synchronous agents event filter function by Def. 3 only
additionally removes go events, which by (A.26) also are irrelevant for such
runs r′. Additionally (A.26) makes the set of joint protocols superfluous for this
lemma, hence the proof from [12] applies for the lock-step synchronous agents
extension as well.

Here are some new properties unique to the lock-step synchronous extension.

Lemma A.66. Whenever a correct agent i ∈ A in an agent context χ ∈ E LSS

sends a message µ in round t, it sends µ to all agents and µ is received by all
agents in the same round t.

Proof. When a correct agent i sends a message, this is done by executing its
protocol (as a fake send initiated by the environment protocol would immedi-
ately make this agent faulty). From the definition of the joint protocol (Def. 4,
(A.23) with (A.24)), an agent can only send a message to all agents or no one.
From the admissibility condition EDelA2 (A.16) and the synchronous commu-
nication environment protocol (A.22), it follows that a sent message has to be
delivered to the receiving agent during the same round t it was sent. Suppose
by contradiction that a message, sent in round t, is not received by some agent
in round t. By (A.16), it follows that this message has to be correctly received
at some later point in time t′ > t. However by (A.22), a correct receive event
can only happen during the same round of its corresponding send event, thus
leading to a contradiction.

Theorem 67. A correct agent i with local history hi in a lock-step synchronous
agents context can infer from hi the number of synced rounds that have passed.
Formally, for an agent context χ ∈ E LSS , a χ-based interpreted system I =
(Rχ, π), a run r ∈ Rχ and timestamp t ∈ N, (I, r, t) |= HinsrNSR(r(t)).

Proof. Analogous to the proof of Theorem 13 from the synchronous agents ex-
tension as CMCBCh ∩ C S ⊆ C S .

34 T. Schlögl et al.

Theorem 68. (Copy of Theorem 27)

There exists an agent context χ ∈ E LSS , where χ =
(
(P

SCA2
ε ,G(0), τB◦S ,EDelA2), P̃SMCBCh

)
,

and a run r ∈ Rχ, such that for agents i, j ∈ A, where i 6= j, some timestamp
t ∈ N, and a χ-based interpreted system I = (Rχ, π)

(I , r, t) |= Hifaultyj .

Proof. Suppose the joint protocol is such that for all global histories h ∈ G

P̃SMCBCh (h) = {(S1, . . . , Sn) |
(∀i ∈ A)(∀D ∈ Si)(∃µ ∈ Msgs) {send(j, µ) | (∀j ∈ A)} ∪ {�} ⊆ D}.

(A.27)

meaning that every agent has to perform at least one broadcast in case it gets the
opportunity to act. By Lemma A.62 (agents execute their protocols only during
synced rounds), Lemma A.66 (whenever a message is sent by a correct agent, all
agents receive it during the same round) and (A.27), it follows that every agent
receives at least one message from every correct agent during a synced round.
Thus in all states, where i is correct, it received a message from itself, but not
from some agent j, j has to be faulty.

	The Persistence of False Memory: Brain in a Vat Despite Perfect Clocks

