Skip to main content

Fully Supervised and Guided Distillation for One-Stage Detectors

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12624))

Included in the following conference series:

Abstract

Model distillation has been extended from image classification to object detection. However, existing approaches are difficult to focus on both object regions and false detection regions of student networks to effectively distill the feature representation from teacher networks. To address it, we propose a fully supervised and guided distillation algorithm for one-stage detectors, where an excitation and suppression loss is designed to make a student network mimic the feature representation of a teacher network in the object regions and its own high-response regions in the background, so as to excite the feature expression of object regions and adaptively suppress the feature expression of high-response regions that may cause false detections. Besides, a process-guided learning strategy is proposed to train the teacher along with the student and transfer knowledge throughout the training process. Extensive experiments on Pascal VOC and COCO benchmarks demonstrate the following advantages of our algorithm, including the effectiveness for improving recall and reducing false detections, the robustness on common one-stage detector heads and the superiority compared with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  2. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV 2: inverted residuals and linear bottlenecks. arXiv preprint arXiv:1801.04381 (2018)

  3. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6848–6856 (2018)

    Google Scholar 

  4. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  5. Xie, G., Wang, J., Zhang, T., Lai, J., Hong, R., Qi, G.: IGCV\(2\): interleaved structured sparse convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  6. He, Y., Liu, P., Wang, Z., Yang, Y.: Pruning filter via geometric median for deep convolutional neural networks acceleration. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  7. Lin, S., et al.: Towards optimal structured CNN pruning via generative adversarial learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  8. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  9. Geoffrey, H., Oriol, V., Jeff, D.: Distilling the knowledge in a neural network. In: Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  10. Mirzadeh, S., Farajtabar, M., Li, A., Ghasemzadeh, H.: Improved knowledge distillation via teacher assistant. In: The AAAI Conference on Artificial Intelligence (AAAI) (2020)

    Google Scholar 

  11. Liu, Y., Sheng, L., Shao, J., Yan, J., Xiang, S., Pan, C.: Multi-label image classification via knowledge distillation from weakly-supervised detection. In: ACM Multimedia, pp. 700–708 (2018)

    Google Scholar 

  12. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  13. Byeongho, H., Minsik, L., Sangdoo, Y., Jin, Young, C.: Knowledge distillation with adversarial samples supporting decision boundary. In: The AAAI Conference on Artificial Intelligence (AAAI) (2019)

    Google Scholar 

  14. Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature imitation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4933–4942 (2019)

    Google Scholar 

  15. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Advances in Neural Information Processing Systems, vol. 30, pp. 742–751 (2017)

    Google Scholar 

  16. Mehta, R., Ozturk, C.: Object detection at 200 frames per second. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 659–675. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_41

    Chapter  Google Scholar 

  17. Wei, Y., Pan, X., Qin, H., Ouyang, W., Yan, J.: Quantization mimic: towards very tiny CNN for object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 274–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_17

    Chapter  Google Scholar 

  18. Cristian, B., Rich, C., Alexandru, N.M.: Model compression. In: KDD (2006)

    Google Scholar 

  19. Junjie, L., et al.: Knowledge representing: efficient, sparse representation of prior knowledge for knowledge distillation. In: The IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  20. Yu, L., Yazici, V.O., Liu, X., Weijer, J.V.D., Cheng, Y., Ramisa, A.: Learning metrics from teachers: compact networks for image embedding. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  21. He, T., Shen, C., Tian, Z., Gong, D., Sun, C., Yan, Y.: Knowledge adaptation for efficient semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  22. Chen, L., Chunyan, Y., Lvcai, C.: A new knowledge distillation for incremental object detection. In: International Joint Conference on Neural Networks (IJCNN) (2019)

    Google Scholar 

  23. Yousong, Z., Chaoyang, Z., Chenxia, H.: Mask guided knowledge distillation for single shot detector. In: International Conference on Multimedia and Expo (ICME) (2019)

    Google Scholar 

  24. Romero, A., Ballas, N., Kahou, S.E., Chassang: FitNets: hints for thin deep nets. In: In Proceedings of International Conference on Learning Representations (2015)

    Google Scholar 

  25. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  26. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  27. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7130–7138 (2017)

    Google Scholar 

  28. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  29. Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  30. Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., Wang, J.: Structured knowledge distillation for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  31. Li, Q., Jin, S., Yan, J.: Mimicking very efficient network for object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  32. Rui, C., Haizhou, A., Chong, S.: Learning lightweight pedestrian detector with hierarchical knowledge distillation. In: 2019 IEEE International Conference on Image Processing (ICIP) (2019)

    Google Scholar 

  33. Zhao, Q., et al.: M2Det: a single-shot object detector based on multi-level feature pyramid network. In: The AAAI Conference on Artificial Intelligence (AAAI) (2019)

    Google Scholar 

  34. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: The European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  35. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  36. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  37. Redmon, J., Farhadi, A.: YOLOV3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  38. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  39. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  40. Deng, J., Pan, Y., Yao, T., Zhou, W., Li, H., Mei, T.: Relation distillation networks for video object detection. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  41. Jifeng, D., Yi, L., Kaiming, H., Jian, S.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  42. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  43. Qin, Z., Li, Z., Zhang, Z., Bao, Y., Yu, G., Peng, Y., Sun, J.: ThunderNet: towards real-time generic object detection on mobile devices. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  44. Wang, R.J., Li, X., Ling, C.X.: Pelee: a real-time object detection system on mobile devices. In: Advances in Neural Information Processing Systems (NIPS), pp. 1967–1976 (2018)

    Google Scholar 

  45. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  46. Girshick, R.: Fast R-CNN. In: International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  47. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Light-head R-CNN: in defense of two-stage object detector. arXiv preprint arXiv:1711.07264 (2017)

  48. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  49. Ba, L.J., Caruana, R.: Do deep nets really need to be deep. In: Advances in Neural Information Processing Systems (NIPS) (2013)

    Google Scholar 

  50. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  51. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

  52. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  53. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  54. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  55. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot detector. In: arXiv preprint arXiv:1701.06659 (2017)

  56. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: The IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongchao Wen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 276 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, D. et al. (2021). Fully Supervised and Guided Distillation for One-Stage Detectors. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69535-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69534-7

  • Online ISBN: 978-3-030-69535-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics