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ABSTRACT

Knowledge transfer among multiple networks using their outputs or intermediate activations have
evolved through extensive manual design from a simple teacher-student approach (knowledge dis-
tillation) to a bidirectional cohort one (deep mutual learning). The key factors of such knowledge
transfer involve the network size, the number of networks, the transfer direction, and the design of the
loss function. However, because these factors are enormous when combined and become intricately
entangled, the methods of conventional knowledge transfer have explored only limited combinations.
In this paper, we propose a new graph-based approach for more flexible and diverse combinations
of knowledge transfer. To achieve the knowledge transfer, we propose a novel graph representation
called knowledge transfer graph that provides a unified view of the knowledge transfer and has the
potential to represent diverse knowledge transfer patterns. We also propose four gate functions that
are introduced into loss functions. The four gates, which control the gradient, can deliver diverse
combinations of knowledge transfer. Searching the graph structure enables us to discover more
effective knowledge transfer methods than a manually designed one. Experimental results on the
CIFAR-10, -100, and Tiny-ImageNet datasets show that the proposed method achieved significant
performance improvements and was able to find remarkable graph structures.

1 Introduction

Deep neural networks have accomplished significant progress by designing their internal structure (e.g., a network’s
module [12, 8, 29, 11] and architecture search [36, 17, 24, 18]). The performance of existing networks can be further
improved by knowledge transfer among multiple networks, such as knowledge distillation (KD) [10] and deep mutual
learning (DML) [35], in extensive tasks without any additional dataset. These methods, which we call “collaborative
learning,” transfer knowledge between multiple networks using their outputs and/or intermediate activations.

Collaborative learning has been manually designed in extensive studies [10, 25, 7, 20, 35, 27, 15, 13], including
the simple teacher-student approach [10], self-distillation [7], an intermediation by teacher assistant [20], and the
bidirectional cohort approach [35]. The key factors of such collaborative learning are the network size, the number of
networks, the transfer direction, and the design of the loss function. In general, increasing the number of networks
tends to improve the performance of the target network [35, 20, 27, 15]. Cho et al. [6] also pointed out that larger
models do not often make better teachers. The methods of conventional knowledge transfer have explored only limited
combinations because the combination of the key factors is enormous and has become intricately entangled. Therefore,
it is necessary to extensively explore diverse patterns of collaborative learning to achieve more effective knowledge
transfer.

In this study, we explore more diverse knowledge transfer patterns in the above key factors for collaborative learning.
Figure 1 shows the concept of our research. We propose a novel graph representation called knowledge transfer graph
that can represent both conventional and new collaborative learning. A knowledge transfer graph provides a unified
view of knowledge transfer and has the potential to represent diverse knowledge transfer patterns. In the graph, each
node represents a network, and each edge represents a direction of knowledge transfer. On each edge, we define a loss
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Figure 1: Concept of the proposed method. From left to right, unidirectional and bidirectional knowledge transfer proposed by
previous studies, the goals of our study, and the knowledge transfer graph representation we propose. In the graph, each
node represents a network, each edge represents the direction of knowledge transfer, and Ls,t represents the loss function
used for training node t. The graph can represent diverse collaborative learning, including conventional methods.

function that is used for transferring knowledge between the two nodes linked by the edge. Combinations of these
loss functions can represent any collaborative learning with pair-wise knowledge transfer. In this paper, we propose
four types of gate functions (through gate, cutoff gate, linear gate, correct gate) that are introduced into loss functions.
These gate functions control the loss value, thereby delivering different effects of knowledge transfer. By arranging the
loss functions at each edge, the graphs enable the representation of diverse collaborative learning patterns. Knowledge
transfer graphs are searched for the network model on each node and the gate function on each edge, which enables us
to discover a more effective knowledge transfer method than a manually designed one.

Our contributions are as follows.

• We propose a knowledge transfer graph that represents conventional and new collaborative learning.

• We propose four types of gates function (through gate, cutoff gate, linear gate, correct gate) to control
backpropagation while training the networks. The knowledge transfer graph optimizes the gates by means of a
hyperparameter search, which can achieve diverse collaborative learning.

• We found that, compared to the vanilla model, our optimized graph achieved accuracy improvements of
1.05% with CIFAR-10, 4.00% with CIFAR-100, and 2.62% with Tiny-ImageNet. On CIFAR-100, the graphs
outperformed a conventional method.

• We verified the generalization of optimized graphs that had been searched on a different dataset from the one
used for optimization. In experiments using CIFAR-10, CIFAR-100, and Tiny-ImageNet, we show that the
optimized graphs can be reused on another dataset.

2 Related Work

2.1 Unidirectional knowledge transfer

In unidirectional knowledge transfer, the outputs of a pre-trained network are used as pseudo labels in addition to
supervised labels for learning a target network effectively. Hinton et al. [10] proposed knowledge distillation, which
trains a student network by using teacher network’s outputs. They succeeded in effectively transferring the teacher’s
internal representation to the student by introducing a temperature parameter into the softmax function. Furlanello et
al. [7] demonstrated that KD can also train effectively in cases where the teacher network’s architecture is the same
as that of the student network. Mirzadeh et al. [20] proposed a method that adds a middle network, called a teacher
assistant, between a teacher and student. When there is a large performance gap between the teacher and the student,
students can be effectively trained by separating them with a middle network. Various approaches that transfer from
intermediate layers have been also proposed, e.g. hint [25], flow of activations between layers [30], and attention
map [33]. [22, 31, 19] transfer mutual relations of data samples in a mini-batch. Distillation has been applied to object
detection [4], domain adaptation [5], text-to-speech [21], etc.
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Figure 2: Knowledge transfer graph (for 3-node case). Each node represents a model, and a loss function Ls,t is defined for each
edge. ŷ is a label. Ls,t calculates the KL divergence from the outputs of two nodes and then passes it through a gate
function. The calculated loss gradient information is only propagated in the direction of the arrow. We can also represent
unidirectional knowledge transfer by cutting off edges with a cutoff gate.

2.2 Bidirectional knowledge transfer

In the bidirectional method, which was first proposed by Zhang et al. [35], there is no pre-trained teacher; randomly
initialized students teach each other by transferring their knowledge. Even when using networks with identical
structures, the accuracy is improved. Zhang et al. pointed out that DML is connected to entropy regularization [3, 23].
In this method, all loss functions used in each network are identical. There could be more potential variants in
collaborative learning if a combination of different loss functions was used. Further improvements in accuracy can be
achieved by using the ensemble outputs of collaboratively trained networks as teachers [27, 15], and by sharing the
intermediate layers of these networks [27, 15, 28]. DML has been applied to large scale distributed training [2] and
re-identification [34]. Dual student [13] is a method of bidirectional knowledge transfer in semi-supervised learning.

3 Proposed Method

We explore graph structures representing diverse knowledge transfer by combining loss functions with four types of
gate. We describe how to represent knowledge transfer graphs in Sec. 3.1, loss function of our proposed method in
Sec. 3.2, four types of gate function in Sec. 3.3, optimization method of each model in Sec. 3.4, and graph optimization
method in Sec. 3.5.

3.1 Knowledge transfer graph representation

Figure 2 shows the knowledge transfer graph representation with three nodes. In the proposed method, the direction of
knowledge transfer between networks is represented by a directed graph, and a different loss function is defined for
each edge. By defining different loss functions, it is possible to express various knowledge transfer methods.

We define a directed graph where nodemi represents the ith model used for training. Each edge represents the directions
in which gradient information is transferred. In this paper, we refer to a node that transfers its knowledge to another as a
source node, and a node to which the source node transfers its knowledge as a destination node. The losses calculated
from the outputs of the two models are back-propagated towards the destination node. Losses are not back-propagated
to the source node.

3.2 Loss function

The mini-batch comprising the image of the nth sample xn and the label ŷn is represented as B = {xn, ŷn}Nn=1, and
the batch size of mini-batch B is represented as |B|. The label ŷn represents class id. The number of models used for
learning is M , and the source and destination nodes are ms and mt, respectively.

When obtaining the difference in output probabilities between nodes, we use the Kullback-Leibler (KL) divergence
KL(ps(xn)||pt(xn)). Here, ps and pt are the outputs of the source and destination nodes, respectively, and consist of
probability distributions normalized by the softmax function.

If the one-hot vector representation of the label ŷn is pŷn
, the loss between pŷn

and the output pt(xn) of destination
node t is calculated using the cross-entropy function H(pŷn

,pt(xn)). H(pŷn
,pt(xn)) can be decomposed into the
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sum of KL divergence and entropy as follows:

H(pŷn ,pt(xn)) = KL(pŷn ||pt(xn)) +H(pŷn ,pŷn)

= KL(pŷn ||pt(xn)).
(1)

Here, since pŷn
is a one-hot vector, its entropy H(pŷn

,pŷn
) is zero. Therefore, the loss between the label and the

output can also be represented by the KL divergence in the same way as the loss between the node outputs. In the
following, pŷn

is denoted by p0(xn).

Ls,t represents the loss function used when knowledge is propagated from the source node ms to the destination node
mt, which is defined by

Ls,t =

|B|∑
n

Gs,t(KL(ps(xn)||pt(xn))), (2)

where Gs,t(·) is a gate function.

Finally, the loss function of the destination node mt is expressed as the sum of losses for all nodes as follows:

Lt =

M∑
s=0,s 6=t

Ls,t. (3)

3.3 Gates

If all information is transferred to the destination node from the source node throughout the entire training phase, the
learning of the destination node is liable to be disrupted. We introduce a gate that controls the gradient to a destination
node by weighting losses for each training sample. We define four types of gate: through gate, cutoff gate, linear gate,
and correct gate. A through gate simply passes through the losses of each training sample without any changes.

GThrough
s,t (a) = a (4)

A cutoff gate is a gate that performs no loss calculation. It can be used to cut off any edge in a knowledge transfer graph.
This function is required in methods such as KD, where knowledge transfer is only performed in one direction.

GCutoff
s,t (a) = 0 (5)

A linear gate changes its loss weighting linearly with time during training. It has a small weighting at the initial epoch,
and its weighting becomes larger as training progresses.

GLinear
s,t (a) =

k

kend
a (6)

Here, k is the cumulative number of updates, and kend is the number of updates at the end of training.

A correct gate is a gate that only passes the losses of samples whose source node is correct. If the top-1 class number of
a source node ms is ys, a correct gate can be expressed as

GCorrect
s,t (a; ŷ, ys) = δŷ,ys · a. (7)

When the source node is not a pre-trained model, the propagation of false information can be suppressed at the initial
epoch. While a linear gate weights the overall loss, a correct gate selects the samples from which the loss is calculated.

3.4 Network optimization

Algorithm 1 shows how to update the network of each node during training. First, all the model weights are randomly
initialized unless all the gates Gi,t corresponding to nodes mi are cutoff gates, in which case mi is initialized with the
weights of the pre-trained model. The pre-trained model is trained only with the labels, using the same dataset as the
one used for the hyperparameter search. Here, mi is frozen during training and its weights are not updated. This node
performs a role being equivalent to that of the teacher network used in KD.

The losses are obtained by inputting the same samples to all nodes. Gradients are obtained from the resulting losses, and
all nodes are updated simultaneously. The gradient of loss Lt obtained from Eq. (3) is back-propagated only to node
mt, and has no effect on the other nodes. In DML, after updating the weights of the first node, the training samples are
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Algorithm 1 Network Optimization

Input: Number of nodes M , number of epochs E
Initialize: Initialize all network weights, or read in the weights of a pre-trained network

for _ = 1 to E do
Input the same image to each network mn, and obtain the output pn.
Obtain the loss Ln according to Eq. (3).
Obtain the update quantity of mn from the gradient Ln.
Update the weights of all networks.

end for

input again to the updated nodes to obtain an output. The losses between every node are then recalculated from this
outputs, and gradient descent is performed for the second node. These steps are repeated until every node has been
updated. The drawback of DML is that this updating method causes a significant increase in computational cost as
the number of nodes increases. In our proposed method, since the weights of every node are updated during a single
forward calculation, it is possible to reduce the computational cost during training.

3.5 Graph optimization

We refer to an optimized node by hyperparameter search as a target node m1, and a node that supports training of
the target node as an auxiliary node. A target node to be optimized is specified, and the knowledge transfer graph
is optimized to maximize the accuracy of this node. The hyperparameters to be optimized are the model type of the
auxiliary node and the gate type on each edge. The size of the search space for this optimization is M (n−1) ·GN2

/2,
where N is the number of nodes, M is the number of model types, and G is the number of gate types. For example, if
N = 3, M = 3, and G = 4, there are over one million patterns.

We used the Asynchronous Successive Halving Algorithm (ASHA) [16] as the hyperparameter optimization method.
First, using D GPU servers, we randomly create a knowledge transfer graph with D servers and perform distributed
asynchronous learning. In each knowledge transfer graph, the accuracy of the target node is evaluated using verification
data at epochs 1, 2, 4, · · · , 2k. If this accuracy is in the lower 50% of all the accuracy values evaluated in the past, the
graph is abandoned and training is performed again after generating a new graph. This process is repeated until the
total number of trials reaches T . ASHA can achieve improvements in terms of both temporal efficiency and accuracy
by performing a random search with active early termination in a parallel distributed environment. We performed
optimization with D = 30 and T = 1500.

4 Experiments

We performed experiments to determine the efficacy of knowledge transfer graphs searched by ASHA.

4.1 Experimental setting

Dataset: We used the CIFAR-10, CIFAR-100 [14], and Tiny-ImageNet [1] datasets, which are typically used for general
object recognition. CIFAR-10 and CIFAR-100 consist of 50,000 images for training and 10,000 images for verification.
Both datasets consist of images with dimensions of 32×32 pixels and include labels for 10 and 100 classes, respectively.
Data augmentation was performed by processing the training images with 4-pixel padding (reflection), random cropping,
and random flipping. Data augmentation was not applied to the verification images. The Tiny-ImageNet dataset consists
of 100,000 training images and 10,000 verification images sampled from the ImageNet [26] dataset. This dataset
consists of images with dimensions of 64×64 pixels and labels for 200 classes. The data augmentation settings were
the same as those for the CIFAR datasets.

Models: We used three networks: ResNet32, ResNet110 [9], and Wide ResNet 28-2 [32]. Table 1 shows the accuracy
achieved when each model was trained with supervised labels only. However, when training with Tiny-ImageNet, since
the images are larger in size, the stride of the initial convolution layer was set to 1.

Implementation details: For the optimization algorithm, we used SGD and Nesterov momentum in all experiments.
The initial learning rate was 0.1, the momentum was 0.9, and the batch size was 64. When training on CIFAR, the
learning rate was reduced to one tenth every 60 epochs, for a total of 200 epochs. When training on the Tiny-ImageNet,
the learning rate was reduced to one tenth at the 40th, 60th, and 70th epochs, for a total of 80 epochs. The reported
accuracy values are averaged over five trials with a fixed graph structure implemented after obtaining the optimized
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(a) 2 nodes (72.96%) (b) 3 nodes (73.73%) (c) 4 nodes (74.60%)

(d) 5 nodes (74.51%) (e) 6 nodes (74.46%) (f) 7 nodes (74.82%)

Figure 3: Optimized knowledge transfer graph. Red node is the target node, blue node is the pre-trained node, and “Label”
represents supervised labels. At each edge, the selected gate is shown, exclusive of cutoff gate. Numbers in parentheses
show the accuracy achieved in one out of five trials.

Model Accuracy [%]
ResNet32 70.71 ± 0.39
ResNet110 72.59 ± 0.54

Wide ResNet 28-2 74.60 ± 0.38

Table 1: Accuracy of vanilla models. Mean and standard deviation of single network accuracies on test data.

graph. The standard deviation over each set of five trials is also shown. Our experiments were implemented using the
Pytorch framework for deep learning and the Optuna framework for hyperparameter searching. The computations were
performed using 90 Quadro P5000 servers. Our implementation is available at {the URL of our github code: It will be
available at camera ready.}

4.2 Optimized knowledge transfer graphs

Figure 3 shows the visualization of the knowledge transfer graphs with two to seven nodes optimized on CIFAR-100.
The graph for two nodes (Fig. 3a) is similar to the conventional bidirectional method, where only the edge from
ResNet32 to Wide ResNet 28-2 is the correct gate, and the other edges are the through gate. From the small network
(ResNet32) to the large network (Wide ResNet), only the correct outputs that match the supervised labels are transferred.
The graph for three nodes (Fig. 3b) is a fusion of unidirectional and bidirectional knowledge transfer. At the beginning
of training, the target node (node 1) imitates only the pre-trained node 3, which is a unidirectional method, because
the linear gate and correct gate deactivate the specific edges between the target node and the labels and between the
target node and node 2. As training progresses, linear and correct gates activate those edges gradually, resulting in
unidirectional and bidirectional knowledge transfer. In the graph for four nodes (Fig. 3c), two of them are ResNet32
and the other two are Wide ResNet28-2. Knowledge of supervised labels is not directly transferred to node 2, and the
node acts as an intermediary for other nodes, like a teacher assistant [20].

For all numbers of nodes, the target node had much better accuracy than that in individual learning (see Tab. 1). The
accuracy of nodes other than the target node was also improved. We found that ResNet32 and ResNet110 were selected
as the nodes of top-1 graphs as well as the highest performance Wide ResNet 28-2, and the performance of the target
node tended to improve when the number of nodes was increased. Our quantitative evaluation is discussed in Sec. 4.4.
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Method Accuracy (Node 1) Node 1 Node 2 Node 3 Node 4 TeCost TrCost
Vanilla 70.71 ± 0.39 ResNet32 – – – 70.2 70.2

DML [35] 72.00 ± 0.44 ResNet32 ResNet32 – – 70.2 140.5
KD (T = 2) [10] 71.88 ± 0.78 ResNet32 WRN28-2* – – 70.2 286.8

DML [35] 72.71 ± 0.18 ResNet32 WRN28-2 – – 70.2 286.8
Ours 72.88 ± 0.41 ResNet32 WRN28-2 – – 70.2 286.8

DML [35] 72.09 ± 0.43 ResNet32 ResNet32 ResNet32 – 70.2 210.8
DML [35] 72.20 ± 0.47 ResNet32 ResNet110 ResNet32 – 70.2 398.2

Ours 73.46 ± 0.42 ResNet32 ResNet110 ResNet32* – 70.2 398.2
DML [35] 72.76 ± 0.35 ResNet32 ResNet32 ResNet32 ResNet32 70.2 281.0

Song et al. [27] 73.68** ± 0.26 (4×ResNet32 with shared intermediate layers) 70.2 160.9
ONE [15] 73.42** ± N/A (4×ResNet32 with shared intermediate layers) 70.2 138.1
DML [35] 73.32 ± 0.55 ResNet32 WRN28-2 WRN28-2 ResNet32 70.2 573.6

Ours 74.34 ± 0.32 ResNet32 WRN28-2 WRN28-2 ResNet32 70.2 573.6

Table 2: Comparison with conventional methods. “*” denotes a pre-trained model. T is a temperature parameter. “**” denotes a
value cited from the paper. TeCost and TrCost represent the computational complexity (MFLOPs) for testing and training,
respectively.

No. of nodes Gates CIFAR-10 CIFAR-100 Tiny-ImageNet
1 – 93.12 ± 0.27 70.71 ± 0.39 53.18 ± 0.08

2 Fixed (Through) 93.25 ± 0.50 72.47 ± 0.38 54.93 ± 0.29
Optimized 93.65 ± 0.14 72.88 ± 0.41 54.69 ± 0.16

3 Fixed (Through) 93.53 ± 0.24 71.88 ± 0.43 53.78 ± 0.78
Optimized 93.92 ± 0.20 73.46 ± 0.42 55.02 ± 0.31

4 Fixed (Through) 93.01 ± 0.79 73.40 ± 0.39 53.92 ± 0.21
Optimized 93.99 ± 0.27 74.34 ± 0.32 55.80 ± 0.26

5 Fixed (Through) 93.61 ± 0.23 73.40 ± 0.28 52.12 ± 0.30
Optimized 94.14 ± 0.16 74.54 ± 0.59 55.30 ± 0.16

6 Fixed (Through) 93.84 ± 0.39 73.85 ± 0.45 49.37 ± 1.70
Optimized 94.17 ± 0.21 74.22 ± 0.22 55.16 ± 0.19

7 Fixed (Through) 93.75 ± 0.27 73.53 ± 0.27 53.10 ± 0.44
Optimized 94.07 ± 0.14 74.71 ± 0.23 54.78 ± 0.36

Table 3: Results of optimization on various datasets. ResNet32 was used as the target node. “Fixed” indicates all gates are
through gates. “Optimized” indicates they have been optimized.

4.3 Comparison with conventional methods

Table 2 compares the results of the proposed and conventional methods. “Ours” shows the results of the proposed
method for optimized graphs with two, three, or four nodes. “KD [10]” uses a pre-trained Wide ResNet 28-2 network
as a teacher, and sets the temperature parameter to T = 2. In “DML [35]” using over three nodes, all student networks
have the same architecture. Since the proposed method chooses which model to use as a hyper parameter, it is possible
to select the optimal combination of models. In “Song et al. [27]” and “ONE [15]”, the intermediate layers of multiple
networks are shared during training. Then, only layers that are close to the output layer are branched, and the ensemble
output of the branched output layers is used as a teacher.

The model learned by the optimized knowledge transfer graph achieved better accuracy than KD, DML, and the latest
proposed method.

4.4 Comparison with graphs lacking diversity

Table 3 shows the accuracy of target nodes in graphs searched on CIFAR-10, CIFAR-100, and Tiny-ImageNet. The
comparison is a non-diverse graph, where each edge has only a through gate and each node is the same model as that of
the graph, which is similar to the conventional unidirectional method [35].

The proposed method achieved higher accuracy than the comparative method in almost every condition, thus demon-
strating the importance of using gates to control the gradient. Moreover, the optimized graphs tended to improve the
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evaluated on CIFAR-100 evaluated on Tiny-ImageNet

No. of nodes fixed to
through gate

searched on
different dataset

(CIFAR-10)

searched on
same dataset
(CIFAR-100)

fixed to
through gate

searched on
different dataset

(CIFAR-10)

searched on
same dataset

(Tiny-ImageNet)
2 72.47 ± 0.38 72.50 ± 0.33 72.88 ± 0.41 54.93 ± 0.29 52.79 ± 0.31 54.69 ± 0.16
3 71.88 ± 0.43 73.63 ± 0.18 73.46 ± 0.42 53.78 ± 0.78 54.21 ± 0.44 55.02 ± 0.31
4 73.40 ± 0.39 73.76 ± 0.25 74.34 ± 0.32 53.92 ± 0.21 54.50 ± 0.36 55.80 ± 0.26
5 73.40 ± 0.28 74.62 ± 0.24 74.54 ± 0.59 52.12 ± 0.30 54.42 ± 0.14 55.30 ± 0.16

Table 4: Accuracy rate of reused graphs optimized on another dataset. Graphs are trained on CIFAR-100 and Tiny-ImageNet,
where graphs are searched on CIFAR-10. Target node is ResNet32.

(a) ResNet32 (b) ResNet110 (c) WRN28-2

Figure 4: Visualization of optimized graphs with three types of target node. Graphs whose target node is ResNet32, ResNet110,
or Wide ResNet 28-2 are searched on CIFAR-100.

accuracy when the number of nodes was increased in all datasets. The fixed gates method has the same loss function on
all the edges, making it difficult to generate diversity even when the number of nodes is increased.

In our experiments, due to the limitation of computational resources, we ran only 1,500 trials for searching the
knowledge transfer graphs. This may not be sufficient because the search space exponentially increases with the number
of nodes. Moreover, if we searched on a larger number of trials, it might be possible to acquire a better knowledge
transfer graph than we discovered. We will explore this possibility in future work.

4.5 Graph transfer to different dataset

We investigated the generalization of graphs on different datasets. Table 4 shows the accuracy of graphs trained on
CIFAR-100 and Tiny-ImageNet, where the graphs are searched on CIFAR-10. CIFAR-10, which is a 10-class dataset
consisting of images of vehicles and animals, has a different distribution from CIFAR-100, which is a 100-class dataset
featuring plants, insects, furniture, etc., and from Tiny-ImageNet.

When evaluated on CIFAR-100, the graphs searched on CIFAR-10 achieved the same performance as those searched on
CIFAR-100. When evaluated on Tiny-ImageNet, while the performance of the graphs searched on CIFAR-10 was lower
than that of graphs searched on Tiny-ImageNet, it was higher than that of non-diverse graphs whose gates were all
through gates, which is a conventional bidirectional method. These results indicate that the knowledge transfer graph
can be reused not only for datasets with relatively close distribution, such as CIFAR-100, but also for those with very
different images, such as Tiny-ImageNet. As such, the reused graphs can greatly reduce the computational cost, since
the searching process can be omitted.

4.6 Optimization of different target nodes

Table 5 shows the performances when ResNet32, ResNet110, or Wide ResNet 28-2 were set as the target node. The
knowledge transfer graphs are trained on CIFAR-100 with three nodes. All the optimized graphs achieved a higher
performance than the non-diverse graph, each of whose edges had only a through gate.

Figure 4 shows a visualization of the optimized graphs. We found that the three nodes in the graphs included at least
one model that was different from the target node. Even when Wide ResNet 28-2, which had the highest performance,
was selected as the target node, the graph included ResNet110, which had a lower performance than Wide ResNet.
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Target node Gates Accuracy [%]

ResNet32 Fixed (Through) 71.88 ± 0.43
Optimized 73.46 ± 0.42

ResNet110 Fixed (Through) 76.08 ± 0.92
Optimized 77.63 ± 0.22

WRN28-2 Fixed (Through) 77.16 ± 0.10
Optimized 77.62 ± 0.24

Table 5: Accuracy of three types of target node. Graphs were optimized with different target nodes on CIFAR-100.

Auxiliary node
Target node ResNet32 ResNet110 WRN28-2
ResNet32 25 % 10 % 65 %
ResNet110 15 % 10 % 75 %
WRN28-2 30 % 20 % 50 %

Table 6: Tendency of the selected auxiliary nodes. Percentages of model type contained in the auxiliary nodes of the top-10
graphs in the experiment of Tab. 5 are shown.

This result suggests that diverse model selection is necessary to create a good knowledge transfer graph. To verify this
hypothesis, we investigated which model had been selected for each auxiliary node of the high performance graphs.
Table 6 shows the percentages of model type contained in the auxiliary nodes of the top-10 graphs for the experiment
shown in Tab. 5. These percentages show the same tendency among all evaluated target nodes. This result demonstrates
that diverse model selection contributes to a high performance for collaborative learning.

5 Conclusion and Future Work

In this paper, we propose a new learning method for more flexible and diverse combinations of knowledge transfer using
a novel graph representation called knowledge transfer graph. The graph provides a unified view of the knowledge
transfer and has the potential to represent diverse knowledge transfer patterns. We also propose four gate functions
that can deliver diverse combinations of knowledge transfer. Searching the graph structure, we discovered remarkable
graphs that achieved significant performance improvements. We searched graphs over 1,500 trials, but the actual search
space is much larger. A more exhaustive search will be the focus of future work.

Since our proposed method defines nodes as individual networks, it only transfers knowledge from the output layers of
these networks. Future work will include knowledge transfer from an intermediate layer. It should also be possible to
perform knowledge transfer using the ensemble inference of multiple networks. Other interesting possibilities include
the introduction of an encoder/decoder model, and the use of multitasking.
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6 Appendix

6.1 Graph Optimization by ASHA

Figure 5 shows the error curves of each trial in searching a graph using the asynchronous successive halving algo-
rithm (ASHA) [16]. ASHA can significantly reduce the computational complexity for searching graphs by terminating
trials that are unlikely to achieve a good performance. In our experiments, pruning a trial was performed at the 1, 2, 4,
8, 16, 32, and 64th epochs.

Figure 5: Error curves when optimizing with ASHA. We optimized a graph with three nodes on Tiny-ImageNet while pruning
with ASHA. Each line represents one trial. The total number of trials is 1500.

6.2 Optimization on Reduced Dataset

We investigated the relationship between the accuracy of a searched top-1 graph and the number of training samples in
the dataset used for searching graphs. Table 7 lists the accuracies of graphs optimized on CIFAR-10 and CIFAR-100
with a reduced number of training samples. We report the recognition rate when retraining the top-1 graphs using all
training data after searching the graphs. The results show that the performance of graphs tended to decrease when
we reduced the number of training samples used for optimization. This suggests that a certain number of samples are
required for optimization of the knowledge transfer graph. When the reduction factor is 1/10, reducing the training
samples has little impact on the performance of graphs. When the computational cost for searching is also reduced to
1/10, and the search time can be greatly reduced.

11

http://arxiv.org/abs/1711.08184


Knowledge Transfer Graph for Deep Collaborative Learning A PREPRINT

Reduction factor No. of samples CIFAR-10 CIFAR-100
1 50000 94.14 ± 0.16 74.54 ± 0.59

1/10 5000 94.08 ± 0.12 74.49 ± 0.56
1/30 1666 93.83 ± 0.04 74.17 ± 0.36
1/50 1000 93.91 ± 0.19 74.29 ± 0.16
1/70 714 94.18 ± 0.12 73.67 ± 0.34

1/100 500 93.79 ± 0.12 73.11 ± 0.39

Table 7: Accuracy of target node optimized on reduced dataset. We optimized graphs with five nodes on the dataset whose
number of training samples was reduced and report the average and standard deviation of the recognition rate when the
optimized graph was retrained five times using all training data.

6.3 Visualization of Knowledge Transfer Graphs

Figure 6 shows the graphs that achieved high performance with three to seven nodes on the CIFAR-100 dataset. The
graph shown in Fig. 6b is an example of weakly supervised learning. It does not have supervised labels, and nodes 1
and 3 learn from node 2, which is a pre-train model. In addition, this graph can be regarded as self-distillation [7] from
node 2 to node 1, as these nodes have the same architecture. Node 2 (ResNet32, a small teacher) transfers its knowledge
to node 3 (WRN28-2, a large student), and node 3 transfers its knowledge to node 1 (target node). This graph suggests
that a network distilled by self-distillation through a larger network can obtain a high generalization ability.
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Figure 6: Visualization of top-N graphs searched on CIFAR-100. Red node represents a target node, blue node represents a
pre-trained model, and “Label” represents a supervised label.
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