Skip to main content

Few-Shot Object Detection by Second-Order Pooling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12625))

Abstract

In this paper, we tackle a challenging problem of Few-shot Object Detection rather than recognition. We propose Power Normalizing Second-order Detector consisting of the Encoding Network (EN), the Multi-scale Feature Fusion (MFF), Second-order Pooling (SOP) with Power Normalization (PN), the Hyper Attention Region Proposal Network (HARPN) and Similarity Network (SN). EN takes support image crops and a query image per episode to produce covolutional feature maps across several layers while MFF combines them into multi-scale feature maps. SOP aggregates them per support image while PN detects the presence of visual feature instead of counting its frequency of occurrence. HARPN cross-correlates the PN pooled support features against the query feature map to match regions and produce query region proposals that are then aggregated with SOP/PN. Finally, support and query second-order descriptors are passed to SN.

Our approach performs well because: (i) HARPN leverages SOP/PN for cross-correlation of detected rather than counted support features with query features which improves region proposals, (ii) SOP/PN capture second-order statistics per region proposal and factor out spatial locations, and (iii) PN limits the complexity of the space of functions over which HARPN and SN learn. These properties lead to the state of the art on the PASCAL VOC 2007/12, MS COCO and the FSOD datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    FSOD is a new dataset released in 2020. Its format differs from datasets such as VOC and COCO. Only few approaches (listed in Table 3) experimented on FSOD.

References

  1. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 6517–6525. IEEE Computer Society (2017)

    Google Scholar 

  2. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR abs/1804.02767 (2018)

    Google Scholar 

  3. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, Quebec, Canada, 7–12 December 2015,pp. 91–99 (2015)

    Google Scholar 

  4. Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp. 1440-1448. IEEE Computer Society (2015)

    Google Scholar 

  5. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 936–944. IEEE Computer Society (2017)

    Google Scholar 

  6. Kong, T., Yao, A., Chen, Y., Sun, F.: HyperNet: towards accurate region proposal generation and joint object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 845–853. IEEE Computer Society (2016)

    Google Scholar 

  7. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp. 4077–4087 (2017)

    Google Scholar 

  8. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. Conference Track Proceedings, OpenReview.net (2017)

    Google Scholar 

  9. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.P.: Meta-learning with memory-augmented neural networks. In: Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, JMLR Workshop and Conference Proceedings, New York City, NY, USA, 19–24 June 2016, vol. 48, pp. 1842–1850. JMLR.org (2016)

    Google Scholar 

  10. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016, pp. 3630–3638 (2016)

    Google Scholar 

  11. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Proceedings of Machine Learning Research, Sydney, NSW, Australia, 6–11 August 2017, vol. 70, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  12. Cai, Q., Pan, Y., Yao, T., Yan, C., Mei, T.: Memory matching networks for one-shot image recognition. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 4080–4088. IEEE Computer Society (2018)

    Google Scholar 

  13. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H.S., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 1199–1208. IEEE Computer Society (2018)

    Google Scholar 

  14. Zhang, H., Koniusz, P.: Power normalizing second-order similarity network for few-shot learning. In: IEEE Winter Conference on Applications of Computer Vision, WACV 2019, Waikoloa Village, HI, USA, 7–11 January 2019, pp. 1185–1193. IEEE (2019)

    Google Scholar 

  15. Chen, H., Wang, Y., Wang, G., Qiao, Y.: LSTD: a low-shot transfer detector for object detection. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 2836–2843. AAAI Press (2018)

    Google Scholar 

  16. Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., Darrell, T.: Few-shot object detection via feature reweighting. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), 27 October–2 November 2019, pp. 8419–8428. IEEE (2019)

    Google Scholar 

  17. Karlinsky, L., et al.: RepMet: representative-based metric learning for classification and few-shot object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 5197–5206. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  18. Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L.: Meta R-CNN: towards general solver for instance-level low-shot learning. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), 27 October–2 November 2019, pp. 9576–9585. IEEE (2019)

    Google Scholar 

  19. Fan, Q., Zhuo, W., Tai, Y.: Few-shot object detection with attention-rpn and multi-relation detector. CoRR abs/1908.01998 (2019)

    Google Scholar 

  20. Koniusz, P., Yan, F., Gosselin, P., Mikolajczyk, K.: Higher-order occurrence pooling for bags-of-words: visual concept detection. IEEE Trans. Pattern Anal. Mach. Intell. 39, 313–326 (2017)

    Article  Google Scholar 

  21. Koniusz, P., Wang, L., Cherian, A.: Tensor representations for action recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  22. Koniusz, P., Zhang, H.: Power normalizations in fine-grained image, few-shot image and graph classification. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  23. Koniusz, P., Tas, Y., Porikli, F.: Domain adaptation by mixture of alignments of second-or higher-order scatter tensors. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 7139–7148. IEEE Computer Society (2017)

    Google Scholar 

  24. Koniusz, P., Zhang, H., Porikli, F.: A deeper look at power normalizations. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 5774–5783. IEEE Computer Society (2018)

    Google Scholar 

  25. Zhang, H., Zhang, J., Koniusz, P.: Few-shot learning via saliency-guided hallucination of samples. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 2770–2779. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  26. Liu, L., Shen, C., van den Hengel, A.: Cross-convolutional-layer pooling for image recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2305–2313 (2017)

    Article  Google Scholar 

  27. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 (2016)

    Google Scholar 

  28. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, 20–26 June 2005, pp. 886–893. IEEE Computer Society (2005)

    Google Scholar 

  29. Forsyth, D.A.: Object detection with discriminatively trained part-based models. IEEE Comput. 47, 6–7 (2014)

    Article  Google Scholar 

  30. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), with CD-ROM, Kauai, HI, USA, 8–14 December 2001, pp. 511–518. IEEE Computer Society (2001)

    Google Scholar 

  31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, Proceedings of a meeting, Lake Tahoe, Nevada, United States, 3–6 December 2012, pp. 1106–1114 (2012)

    Google Scholar 

  32. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 2999–3007. IEEE Computer Society (2017)

    Google Scholar 

  33. Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 404–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_24

    Chapter  Google Scholar 

  34. Singh, B., Najibi, M., Davis, L.S.: SNIPER: efficient multi-scale training. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 9333–9343 (2018)

    Google Scholar 

  35. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, Lille, vol. 2 (2015)

    Google Scholar 

  36. Shyam, P., Gupta, S., Dukkipati, A.: Attentive recurrent comparators. In Precup, D., Teh, Y.W., (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Proceedings of Machine Learning Research, Sydney, NSW, Australia, 6–11 August 2017, vol. 70, pp. 3173–3181. PMLR (2017)

    Google Scholar 

  37. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 4367–4375. IEEE Computer Society (2018)

    Google Scholar 

  38. Simon, C., Koniusz, P., Nock, R., Harandi, M.: Adaptive subspaces for few-shot learning. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2020 (2020)

    Google Scholar 

  39. Simon, C., Koniusz, P., Nock, R., Harandi, M.: On modulating the gradient for meta-learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 556–572. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_33

    Chapter  Google Scholar 

  40. Zhang, H., Zhang, L., Qi, X., Li, H., Torr, P.H.S., Koniusz, P.: Few-shot action recognition with permutation-invariant attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 525–542. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_31

    Chapter  Google Scholar 

  41. Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In: British Machine Vision Conference 2018, BMVC 2018, Newcastle, UK, 3–6 September 2018, p. 79. BMVA Press (2018)

    Google Scholar 

  42. Michaelis, C., Bethge, M., Ecker, A.S.: One-shot segmentation in clutter. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Proceedings of Machine Learning Research, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018, vol. 80, pp. 3546–3555. PMLR (2018)

    Google Scholar 

  43. Hu, T., Yang, P., Zhang, C., Yu, G., Mu, Y., Snoek, C.G.M.: Attention-based multi-context guiding for few-shot semantic segmentation. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, 27 January–1 February 2019, pp. 8441–8448. AAAI Press (2019)

    Google Scholar 

  44. Gui, L.-Y., Wang, Y.-X., Ramanan, D., Moura, J.M.F.: Few-shot human motion prediction via meta-learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 441–459. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_27

    Chapter  Google Scholar 

  45. y Terán, A.R.M., Gouiffès, M., Lacassagne, L.: Enhanced local binary covariance matrices (ELBCM) for texture analysis and object tracking. In: Eisert, P., Gagalowicz, A. (eds.) 6th International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications, MIRAGE 2013, Berlin, Germany, 06–07 June 2013, pp. 10:1–10:8. ACM (2013)

    Google Scholar 

  46. Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_45

    Chapter  Google Scholar 

  47. Shih, Y., Yeh, Y., Lin, Y., Weng, M., Lu, Y., Chuang, Y.: Deep co-occurrence feature learning for visual object recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 7302–7311. IEEE Computer Society (2017)

    Google Scholar 

  48. Koniusz, P., Yan, F., Gosselin, P.H., Mikolajczyk, K.: Higher-order occurrence pooling on mid-and low-level features: visual concept detection (2013)

    Google Scholar 

  49. Koniusz, P., Yan, F., Mikolajczyk, K.: Comparison of mid-level feature coding approaches and pooling strategies in visual concept detection. Comput. Vis. Image Underst. 117, 479–492 (2013)

    Article  Google Scholar 

  50. Zhu, H., Koniusz, P.: Generalized factorized bilinear graph convolutional networks for text classification. ArXiV (2020)

    Google Scholar 

  51. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

  52. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  53. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. 32, 1231–1237 (2013)

    Article  Google Scholar 

  54. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, Florida, USA, 20–25 June 2009, pp. 248–255. IEEE Computer Society (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Koniusz .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 211 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Luo, D., Wang, L., Koniusz, P. (2021). Few-Shot Object Detection by Second-Order Pooling. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69538-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69537-8

  • Online ISBN: 978-3-030-69538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics