Skip to main content

Over-Exposure Correction via Exposure and Scene Information Disentanglement

  • Conference paper
  • First Online:
Book cover Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12625))

Included in the following conference series:

Abstract

Over-exposure correction is an important problem of great consequence to social media industries. In this paper, we propose a novel model to tackle this task. Considering that reasonable enhanced results can still vary in terms of exposure, we do not strictly enforce the model to generate identical results with ground-truth images. On the contrary, we train the network to recover the lost scene information according to the existing information of the over-exposure images and generate naturalness-preserved images. Experiments compared with several state-of-the-art methods show the superior performance of the proposed network. Besides, we also verify our hypothesis with ablation studies. Our source code is available at https://github.com/0x437968/overexposure-correction-dise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    HDR images are required in DRHT [2] and Hdrcnn [3], therefore we can not retrain these two methods.

References

  1. Zhang, Q., Nie, Y., Zheng, W.S.: Dual illumination estimation for robust exposure correction. Comput. Graph. Forum 38, 243–252 (2019)

    Article  Google Scholar 

  2. Yang, X., Xu, K., Song, Y., Zhang, Q., Wei, X., Lau, R.W.: Image correction via deep reciprocating HDR transformation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  3. Eilertsen, G., Kronander, J., Denes, G., Mantiuk, R.K., Unger, J.: HDR image reconstruction from a single exposure using deep CNNs. ACM Trans. Graph. 36, 1–15 (2017)

    Article  Google Scholar 

  4. Lu, B., Chen, J.C., Chellappa, R.: Unsupervised domain-specific deblurring via disentangled representations. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2019-June, pp. 10217–10226 (2019)

    Google Scholar 

  5. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  6. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December, pp. 2536–2544 (2016)

    Google Scholar 

  7. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36, 1–14 (2017)

    Article  Google Scholar 

  8. Ren, Y., Yu, X., Zhang, R., Li, T.H., Liu, S., Li, G.: Structureflow: image inpainting via structure-aware appearance flow. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  9. Zhang, R., Ren, Y., Qiu, J., Li, G.: Base-detail image inpainting. In: BMVC (2019)

    Google Scholar 

  10. Endo, Y., Kanamori, Y., Mitani, J.: Deep reverse tone mapping. ACM Trans. Graph. 36, 1–177 (2017)

    Article  Google Scholar 

  11. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. CoRR abs/1707.02880 (2017)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., (eds.): Advances in Neural Information Processing Systems 27. Curran Associates, Inc. pp. 2672–2680 (2014)

    Google Scholar 

  13. Zhang, X., Brainard, D.H.: Estimation of saturated pixel values in digital color imaging. J. Opt. Soc. Am. A 21, 2301–2310 (2004)

    Article  Google Scholar 

  14. Masood, S., Zhu, J., Tappen, M.: Automatic correction of saturated regions in photographs using cross-channel correlation. Comput. Graph. Forum 28, 1861–1869 (2009)

    Article  Google Scholar 

  15. Guo, D., Cheng, Y., Zhuo, S., Sim, T.: Correcting over-exposure in photographs. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 515–521 (2010)

    Google Scholar 

  16. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 27, 2049–2062 (2018)

    Article  MathSciNet  Google Scholar 

  17. Banterle, F., Ledda, P., Debattista, K., Chalmers, A.: Inverse tone mapping, pp. 349–356 (2006)

    Google Scholar 

  18. Takahashi, T.: Image inpainting. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers 71, 503–504 (2017)

    Article  Google Scholar 

  19. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. (Proc. SIGGRAPH) 28(3), 24 (2009)

    Google Scholar 

  20. Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Trans. Graph. 26, 1–7 (2007)

    Article  Google Scholar 

  21. Liu, G., Reda, F.A., Shih, K.J., Wang, T., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. CoRR abs/1804.07723 (2018)

    Google Scholar 

  22. Li, J., Wang, N., Zhang, L., Du, B., Tao, D.: Recurrent feature reasoning for image inpainting. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  23. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision 2017-October, pp. 1510–1519 (2017)

    Google Scholar 

  24. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings, pp. 1–14 (2014)

    Google Scholar 

  25. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  27. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  29. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: Proceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017 2018-January, pp. 3015–3022 (2017)

    Google Scholar 

  30. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

  31. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems 2017-December, pp. 6627–6638 (2017)

    Google Scholar 

  32. Binkowski, M., Sutherland, D., Arbel, M., Gretton, A.: Demystifying mmd gans. ArXiv abs/1801.01401 (2018)

    Google Scholar 

  33. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  34. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Key-Area Research and Development Program of Guangdong Province (No.2019B121204008), National Natural Science Foundation of China and Guangdong Province Scientific Research on Big Data (No. U1611461). In addition, we thank the anonymous reviewers for their time and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Y., Ren, Y., Li, T.H., Li, G. (2021). Over-Exposure Correction via Exposure and Scene Information Disentanglement. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69538-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69537-8

  • Online ISBN: 978-3-030-69538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics