Skip to main content

Hyperparameter-Free Out-of-Distribution Detection Using Cosine Similarity

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Abstract

The ability to detect out-of-distribution (OOD) samples is vital to secure the reliability of deep neural networks in real-world applications. Considering the nature of OOD samples, detection methods should not have hyperparameters that need to be tuned depending on incoming OOD samples. However, most recently proposed methods do not meet this requirement, leading to a compromised performance in real-world applications. In this paper, we propose a simple and computationally efficient, hyperparameter-free method that uses cosine similarity. Although recent studies show its effectiveness for metric learning, it remains uncertain if cosine similarity works well also for OOD detection. There are several differences in the design of output layers from the metric learning methods; they are essential to achieve the best performance. We show through experiments that our method outperforms the existing methods on the evaluation test recently proposed by Shafaei et al. which takes the above issue of hyperparameter dependency into account; it achieves at least comparable performance to the state-of-the-art on the conventional test, where other methods but ours are allowed to use explicit OOD samples for determining hyperparameters. Lastly, we provide a brief discussion of why cosine similarity works so well, referring to an explanation by Hsu et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Datasets are available at https://github.com/facebookresearch/odin.

  2. 2.

    We used the publicly available code: https://github.com/pokaxpoka/deep_Mahalanobis_detector.

  3. 3.

    A complete table including other metrics, i.e., accuracy at TPR\(\,=\,95\%\) and AUPR-IN, is shown in the supplementary material.

References

  1. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: Proceedings of the International Conference on Learning Representations (2017)

    Google Scholar 

  2. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: Proceedings of the International Conference on Learning Representations (2017)

    Google Scholar 

  3. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  4. Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., Willke, T.L.: Out-of-distribution detection using an ensemble of self supervised leave-out classifiers. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 550–564 (2018)

    Google Scholar 

  5. Shalev, G., Adi, Y., Keshet, J.: Out-of-distribution detection using multiple semantic label representations. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 550–564 (2018)

    Google Scholar 

  6. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  7. Yu, Q., Aizawa, K.: Unsupervised out-of-distribution detection by maximum classifier discrepancy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9518–9526 (2019)

    Google Scholar 

  8. Macêdo, D., Ludermir, T.: Neural networks out-of-distribution detection: hyperparameter-free isotropic maximization loss, the principle of maximum entropy, cold training, and branched inferences. arXiv:2006.04005 (2020)

  9. Shafaei, A., Schmidt, M., Little, J.J.: A less biased evaluation of out-of-distribution sample detectors. In: Proceedings of the British Machine Vision Conference (2019)

    Google Scholar 

  10. Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized odin: detecting out-of-distribution image without learning from out-of-distribution data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10951–10960 (2020)

    Google Scholar 

  11. Ranjan, R., Castillo, C.D., Chellappa, R.: L2-constrained softmax loss for discriminative face verification. arXiv:1703.09507 (2017)

  12. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  13. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: Normface: L2 hypersphere embedding for face verification. In: Proceedings of the 25th ACM international conference on Multimedia, pp. 1041–1049 (2017)

    Google Scholar 

  14. Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  15. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  16. Zhang, X., Zhao, R., Qiao, Y., Wang, X., Li, H.: Adacos: adaptively scaling cosine logits for effectively learning deep face representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10823–10832 (2019)

    Google Scholar 

  17. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  18. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  19. Azizpour, H., Teye, M., Smith, K.: Bayesian uncertainty estimation for batch normalized deep networks. In: Proceedings of the International Conference on Machine Learning, pp. 4907–4916 (2018)

    Google Scholar 

  20. Gast, J., Roth, S.: Lightweight probabilistic deep networks. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 3369–3378 (2018)

    Google Scholar 

  21. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  22. Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7, 17816 (2017)

    Article  Google Scholar 

  23. DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting segmentation quality. arXiv:1807.00502 (2018)

  24. Blum, H., Sarlin, P.E., Nieto, J., Siegwart, R., Cadena, C.: Fishyscapes: a benchmark for safe semantic segmentation in autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  25. Bevandić, P., Krešo, I., Oršić, M., Šegvić, S.: Simultaneous semantic segmentation and outlier detection in presence of domain shift. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) DAGM GCPR 2019. LNCS, vol. 11824, pp. 33–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33676-9_3

    Chapter  Google Scholar 

  26. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 1321–1330 (2017)

    Google Scholar 

  27. Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated regression. In: Proceedings of the International Conference on Machine Learning, pp. 2796–2804 (2018)

    Google Scholar 

  28. Subramanya, A., Srinivas, S., Babu, R.V.: Confidence estimation in deep neural networks via density modelling. In: Proceedings of International Conference on Multimedia and Expo (2017)

    Google Scholar 

  29. Scheirer, W.J., Rocha, A., Micheals, R.J., Boult, T.E.: Meta-recognition: the theory and practice of recognition score analysis. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1689–1695 (2011)

    Article  Google Scholar 

  30. Chen, T., Navrátil, J., Iyengar, V., Shanmugam, K.: Confidence scoring using whitebox meta-models with linear classifier probes. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, pp. 1467–1475 (2018)

    Google Scholar 

  31. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. In: Proceedings of the International Conference on Learning Representations (2018)

    Google Scholar 

  32. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  33. Hendrycks, D., Mazeika, M., Dietterich, T.G.: Deep anomaly detection with outlier exposure. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  34. Hendrycks, D., Lee, K., Mazeika, M.: Using pre-training can improve model robustness and uncertainty. In: Proceedings of the International Conference on Machine Learning, pp. 2712–2721 (2019)

    Google Scholar 

  35. Xu, P., Ehinger, K.A., Zhang, Y., Finkelstein, A., Kulkarni, S.R., Xiao, J.: Turkergaze: crowdsourcing saliency with webcam based eye tracking. arXiv:1504.06755 (2015)

  36. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Proceedings of the International Conference on Learning Representations (2015)

    Google Scholar 

  37. Wang, J., et al.: Learning fine-grained image similarity with deep ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1386–1393 (2014)

    Google Scholar 

  38. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  39. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), Vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  40. Sun, Y., Wang, X., Tang, X.: Sparsifying neural network connections for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4856–4864 (2016)

    Google Scholar 

  41. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  42. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  43. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning (2016)

    Google Scholar 

  44. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  45. Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: Lsun: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv:1506.03365 (2015)

  46. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: Advances in Neural Information Processing Systems Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  47. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  48. Coates, A., Lee, H., Ng, A.Y.: An analysis of single layer networks in unsupervised feature learning. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)

    Google Scholar 

  49. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  50. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747 (2017)

  51. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the British Machine Vision Conference (2016)

    Google Scholar 

  52. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant Number JP19H01110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engkarat Techapanurak .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 452 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Techapanurak, E., Suganuma, M., Okatani, T. (2021). Hyperparameter-Free Out-of-Distribution Detection Using Cosine Similarity. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69538-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69537-8

  • Online ISBN: 978-3-030-69538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics