Skip to main content

Single-Image Camera Response Function Using Prediction Consistency and Gradual Refinement

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12627))

Abstract

A few methods have been proposed to estimate the CRF from a single image, however most of them tend to fail in handling general real images. For instance, EdgeCRF based on patches extracted from colour edges works effectively only when the presence of noise is insignificant, which is not the case for many real images; and, CRFNet, a recent method based on fully supervised deep learning works only for the CRFs that are in the training data, and hence fail to deal with other possible CRFs beyond the training data. To address these problems, we introduce a non-deep-learning method using prediction consistency and gradual refinement. First, we rely more on the patches of the input image that provide more consistent predictions. If the predictions from a patch are more consistent, it means that the patch is likely to be less affected by noise or any inferior colour combinations, and hence, it can be more reliable for CRF estimation. Second, we employ a gradual refinement scheme in which we start from a simple CRF model to generate a result which is more robust to noise but less accurate, and then we gradually increase the model’s complexity to improve the estimation. This is because a simple model, while being less accurate, overfits less to noise than a complex model does. Our experiments confirm that our method outperforms the existing single-image methods for both daytime and nighttime real images.

This work is supported by MOE2019-T2-1-130.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kim, S.J., Frahm, J.M., Pollefeys, M.: Radiometric calibration with illumination change for outdoor scene analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  2. Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape-from-shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21, 690–706 (1999)

    Article  Google Scholar 

  3. Nayar, S.K., Ikeuchi, K., Kanade, T.: Shape from interreflections. Int. J. Comput. Vis. 6, 173–195 (1991). https://doi.org/10.1007/BF00115695

    Article  Google Scholar 

  4. Finlayson, G.D., Hordley, S.D., Hubel, P.M.: Color by correlation: a simple, unifying framework for color constancy. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1209–1221 (2001)

    Article  Google Scholar 

  5. Tan, R.T., Nishino, K., Ikeuchi, K.: Color constancy through inverse-intensity chromaticity space. JOSA A 21, 321–334 (2004)

    Article  Google Scholar 

  6. Shi, B., Matsushita, Y., Wei, Y., Xu, C., Tan, P.: Self-calibrating photometric stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)

    Google Scholar 

  7. Shi, B., Inose, K., Matsushita, Y., Tan, P., Yeung, S.K., Ikeuchi, K.: Photometric stereo using internet images. In: International Conference on 3D Vision (3DV) (2014)

    Google Scholar 

  8. Tan, R.T., Ikeuchi, K.: Separating reflection components of textured surfaces using a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27, 178–193 (2005)

    Article  Google Scholar 

  9. Finlayson, G.D., Drew, M.S., Lu, C.: Entropy minimization for shadow removal. Int. J. Comput. Vis. 85, 35–57 (2009). https://doi.org/10.1007/s11263-009-0243-z

    Article  Google Scholar 

  10. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: IEEE International Conference on Computer Vision Workshops (ICCVW) (2017)

    Google Scholar 

  11. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), SIGGRAPH 1997 (1997)

    Google Scholar 

  12. Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (1999)

    Google Scholar 

  13. Mann, S.: Comparametric equations with practical applications in quantigraphic image processing. IEEE Trans. Image Process. (TIP) 9, 1389–1406 (2000)

    Article  MathSciNet  Google Scholar 

  14. Matsushita, Y., Lin, S.: Radiometric calibration from noise distributions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)

    Google Scholar 

  15. Lin, S., Gu, J., Yamazaki, S., Shum, H.Y.: Radiometric calibration from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2004)

    Google Scholar 

  16. Lin, S., Zhang, L.: Determining the radiometric response function from a single grayscale image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  17. Li, H., Peers, P.: CRF-net: single image radiometric calibration using CNNs. In: European Conference on Visual Media Production (CVMP) (2017)

    Google Scholar 

  18. Ng, T.T., Chang, S.F., Tsui, M.P.: Using geometry invariants for camera response function estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)

    Google Scholar 

  19. Grossberg, M.D., Nayar, S.K.: Modeling the space of camera response functions. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 26, 1272–1282 (2004)

    Article  Google Scholar 

  20. Lee, J.Y., Matsushita, Y., Shi, B., Kweon, I.S., Ikeuchi, K.: Radiometric calibration by rank minimization. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 35, 144–156 (2012)

    Article  Google Scholar 

  21. Kim, S.J., Pollefeys, M.: Robust radiometric calibration and vignetting correction. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 30, 562–576 (2008)

    Article  Google Scholar 

  22. Litvinov, A., Schechner, Y.Y.: Addressing radiometric nonidealities: a unified framework. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  23. Mann, S., Mann, R.: Quantigraphic imaging: estimating the camera response and exposures from differently exposed images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2001)

    Google Scholar 

  24. Park, J., Tai, Y.W., Sinha, S.N., So Kweon, I.: Efficient and robust color consistency for community photo collections. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  25. Díaz, M., Sturm, P.: Radiometric calibration using photo collections. In: IEEE International Conference on Computational Photography (ICCP) (2011)

    Google Scholar 

  26. Li, C., Lin, S., Zhou, K., Ikeuchi, K.: Radiometric calibration from faces in images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  27. Kao, Y.L., Chen, Y.S., Ouhyoung, M.: Progressive-CRF-net: single image radiometric calibration using stacked CNNs. In: ACM SIGGRAPH 2018 Posters, pp. 1–2 (2018)

    Google Scholar 

  28. Kim, S.J., Lin, H.T., Lu, Z., Süsstrunk, S., Lin, S., Brown, M.S.: A new in-camera imaging model for color computer vision and its application. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 34, 2289–2302 (2012)

    Article  Google Scholar 

  29. Cheng, D., Prasad, D.K., Brown, M.S.: Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. J. Opt. Soc. Am. A: 31, 1049–1058 (2014)

    Article  Google Scholar 

  30. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  31. Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26, 982–993 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aashish Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Tan, R.T., Cheong, LF. (2021). Single-Image Camera Response Function Using Prediction Consistency and Gradual Refinement. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12627. Springer, Cham. https://doi.org/10.1007/978-3-030-69544-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69544-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69543-9

  • Online ISBN: 978-3-030-69544-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics