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Abstract. The current trend of the modern smart cities applications towards a
continuous increase in the volume of produced data and the concurrent need for
low and predictable latency in the response time has motivated the shift from
a cloud to a fog computing approach. A fog computing architecture is likely to
represent a preferable solution to reduce the application latency and the risk of
network congestion by decreasing the volume of data transferred to cloud data
centers. However, the design of a fog infrastructure opens new issues concerning
not only how to allocate the data flow coming from sensors to fog nodes and from
there to cloud data centers, but also the choice of the number and the location of
the fog nodes to be activated among a list of potential candidates. We model this
facility location issue through a multi-objective optimization problem. We pro-
pose a heuristic based on the variable neighborhood search, where neighborhood
structures are based on swap and move operations. The proposed method is tested
in a wide range of scenarios, considering a smart city application’s realistic setup
with geographically distributed sensors. The experimental evaluation shows that
our method can achieve stable and better performance concerning other literature
approaches, supporting the given application.

Keywords: Smart cities · Fog networking · Facility location problem

1 Introduction

Smart city applications that require the processing of huge volumes of data produced by
geographically distributed sensors represent a typical scenario where fog computing is
likely to be a winning approach. Its potential has been demonstrated, indeed, by several
studies in literature [6,16–18]. The main characteristic of fog computing is the ability to
push on the network edge functions such as data filtering and aggregation [17,18], with
a twofold advantage. First, it reduces the data volume reaching the cloud data center,
thus avoiding the risk of poor performance due to high network utilization and reducing
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the non-negligible economic costs related to the cloud pricing model. Second, the fog
layer located on the network edge can guarantee a fast response to latency-sensitive
applications (e.g., traffic monitoring and support for autonomous driving ) that cannot
accept delays in the order of hundreds of milliseconds due to the potentially high round-
trip-time latency with the cloud data center.

Fig. 1: Cloud and fog infrastructures.

In Figure 1, we compare fog and cloud approaches. In the cloud architecture (left
part of the figure), a set of sensors sends data directly to the cloud data center for pro-
cessing. In the fog case (right part of the figure), a layer of fog nodes is placed on the
network edge to host pre-processing, filtering, and aggregation tasks.

The introduction of the intermediate layer of fog nodes represents an additional de-
gree of freedom that arises new issues for the overall infrastructure design. In particular,
many studies [6,19] consider just the fog to cloud communication, adopting a naive ap-
proach in the allocation (i.e., mapping) of data flows coming from the sensors over the
fog layer, assuming that every sensor sends data to the nearest fog node. On the other
hand, recent studies demonstrated that optimized data flow allocation could provide a
significant advantage [3]. However, even when some optimization is performed in the
sensors-to-fog mapping, no attention has been devoted to minimizing the number of fog
nodes required to satisfy the Service Level Agreement (SLA) to reduce the costs and
the energy consumption related to the management of the fog infrastructure.

In the operational research field, this issue is named facility location problem [7, 8]
and concerns the identification of facilities, so the costs incurred from allocating cus-
tomers to the selected facilities are minimized, and represents nowadays a very active
field of research. A recent survey on service facility location problems can be found
in [5]. While this aspect has been widely explored at the level of managing resources in
a cloud data center [1, 12], it has not been considered so far in the fog computing field.

In this paper, we formalize the facility location problem through an optimization
model aiming to map sensors data flow over the fog layer with a two-fold objective:
minimize the number of turned on fog nodes while guaranteeing the respect of a ser-
vice level agreement on response time; and, minimize the response time for the given
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number of selected fog nodes. In the model, we consider both network delays and pro-
cessing time at the level of fog nodes. Furthermore, a qualifying point of this study is
the development of a heuristic, based on the Variable Neighborhood Search (VNS) [9],
to solve the facility location problem over a fog computing infrastructure.

As pointed out in [9], the VNS can be seen as a framework for building heuristics
to solve different optimization problems. In the recent survey of [15], it was discussed
how the VNS had been successfully applied to solve problems in reverse logistics and
closed-loop supply chain networks. Concerning facility location related problems, a
VNS with path-relinking was proposed in [20] for the location routing problem, where
neighborhood structures based on insertion, swap, 2-opt, and CROSS-exchange moves
were used. Recently, a basic variable neighborhood search, based on the less is more
concept, was developed in [13] for an obnoxious p-median problem. The obnoxious
effect occurs when a facility should be located as far as possible from an inhabited
center.

We evaluate the proposed VNS in the realistic scenario of a smart city application
with geo-referenced sensors collecting data for traffic monitoring in the city of Modena
in Italy. The VNS is compared with the optimization model solved by a state-of-the-
art solver in terms of its capability of reducing costs and response times. Moreover, a
sensitivity analysis is performed concerning the infrastructure size. The experimental
results demonstrate that our proposal can outperform the alternatives with stable results
concerning a wide range of scenarios.

The rest of the paper is organized as follows. Section 2 presents the theoretical
modeling for the considered problem. Section 3 presents the VNS to solve the facility
location problem in fog computing infrastructures. Section 4 presents the experimental
setup and the considered scenarios, providing a thorough evaluation of the proposed
model against the alternatives. Finally, Section 5 gives some concluding remarks and
outlines some future work direction.

2 Problem Definition

In this section, we formalize the location-allocation problem in a fog architecture as a
multi-objective optimization problem that aims to minimize two aspects: 1) the delay
in the transit of the data from sensors to fog nodes to the cloud data center; 2) the cost
associated with the number of fog nodes turned on.

To model this problem, let us assume a stationary scenario with a set S of geograph-
ically distributed sensors producing data at a steady rate: we denote as λi the frequency
of sensor i. The data are sent to an intermediate layer of a set F of fog nodes. These
nodes can perform operations on data such as filtering and aggregation or specific anal-
ysis, such as anomaly detection with low latency. We denote as µj the processing rate of
the fog node j, and as δij the delay from sensor i to fog node j. The model also includes
a set C of cloud data centers that receive data from the fog nodes, where δjk represents
the delay from fog node j to cloud data center k. To formalize the problem, we use the
following binary decision variables: a) xij , indicating whether sensor i sends data to
fog node j; b) yjk, indicating whether fog node j sends data to cloud data center k; c)
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Ej , defining whether the fog node located at position j is turned on and available to
process data from sensors. The main symbols of the model are summarized in Table 1.

Table 1: Notation and parameters for the proposed model.

Model parameters

S Set of sensors
F Set of fog nodes
C Set of cloud data centers
λi Outgoing data rate from sensor i
λj Incoming data rate at fog node j
1/µj Processing time at fog node j
δij Communication latency between sensor i and fog node j
δjk Communication latency between fog j and cloud k
cj Cost for locating a fog node at position j

(or for keeping the fog node turned on)

Model indices

i Index for a sensor
j Index for a fog node
k Index for a cloud data center

Decision variables

Ej Location of fog node j
xij Allocation of sensor i to fog node j
yjk Allocation of fog node j to cloud data center k

For the problem of sensors allocation on the fog nodes, introduced in [3], we con-
sider the application average response time TR, which depends on three components
(Eq. (1)): the network delay due to the sensor-to-fog latency TnetSF (Eq. (2)), the net-
work delay due to the fog-to-cloud latency TnetFC (Eq. (3)), and the processing time
on the fog nodes Tproc (Eq. (4)).

TR = TnetSF + TnetFC + Tproc (1)

TnetSF =
1∑
i∈S λi

∑
i∈S

∑
j∈F

λixijδij (2)

TnetFC =
1∑

j∈F λj

∑
j∈F

∑
k∈C

λjyjkδjk (3)

Tproc =
1∑

j∈F λj

∑
j∈F

λj
1

µj − λj
(4)

In the components TnetSF and TnetFC , each delay is weighted by the amount of
traffic exchanged on the corresponding link, which is λi for TnetSF and λj in TnetFC .
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The incoming data rate on each fog node λj , indeed, can be defined as the sum of the
data rates of the sensors allocated to that node:

λj =
∑
i∈S

xijλi, ∀j ∈ F (5)

The component concerning the processing time Tproc is modeled using the queuing
theory considering an M/G/1 system and is consistent with other results in literature [1,
4]. Specifically, the generic fog node j is characterized by an average processing time
1/µj and receives an incoming stream of jobs with frequency λj (where λj is defined
as in Eq. (5)). It is worth mentioning that we do not consider the cloud layer’s details in
our problem modeling, such as the computation time at the cloud data center level, as
this aspect has been widely covered in literature [2].

Finally, we consider that a fixed cost cj is associated with the fog node j if it is
turned on to model the overall cost due to the fog node activation. In our model, we
do no consider other constraints, such as the amount of memory required by the fog
nodes’ application. Such additional constraints can be straightforwardly added to the
model. However, in our experience, the most critical constraint for fog infrastructures
deployment is the processing power rather than the available memory. Hence, we opted
for a more streamlined model. The complete model for the fog node location-allocation
problem may be defined as follows.

Minimize:

C =
∑
j∈F

cjEj (6)

TR = TnetSF + TnetFC + Tproc (7)
Subject to:

TR ≤ TSLA (8)
λj < Ejµj , ∀j ∈ F (9)∑

j∈F
xij = 1, ∀i ∈ S (10)

∑
k∈C

yjk = Ej , ∀j ∈ F (11)

Ej ∈ {0, 1}, ∀j ∈ F (12)
xij ∈ {0, 1}, ∀i ∈ S, j ∈ F (13)
yjk ∈ {0, 1}, ∀j ∈ F , k ∈ C (14)

The two objective functions, (6) and (7), are related, respectively, to the minimiza-
tion of: cost, which is associated with the number of fog nodes turned on; and, latency,
which is the delay in sensor to fog to cloud data transit expressed through the function
introduced as TR in (1). The second objective is subordinated to the first one, meaning
that we aim to minimize (7) as long as the improvement for this objective function does
not introduce an increase for (6).
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The model includes several constraints. Constraint (8) introduces a limit for the
average response time that should not exceed a Service Level Agreement (SLA), which
is typically defined as a multiple of the average response time 1/µ [1]. We also introduce
a term due to the network delays in a distributed architecture (non-negligible) that we
consider depending on the average network delays δ. The SLA limit in (15) can be
formalized as follows, with K defined depending on the network requirements:

TSLA =
K

µ
+ 2δ (15)

Constraints (9) ensure that no overload occurs on each fog node, imposing that
the incoming data flow does not exceed the processing rate. For a node that is powered
down, no processing must occur. Constraints (10) guarantee for each sensor that one fog
node processes its data, while constraints (11) ensure for each fog node that exactly one
cloud data center receives its processed data. Constraints (12), (13) and (14) describe
the domain of the decision variables.

3 Variable Neighborhood Heuristic

A Variable Neighborhood Search (VNS) is proposed to solve the facility location prob-
lem that arises in fog computing infrastructures. The VNS methodology was initially
proposed in [14]. It has a systematical change of neighborhoods to look for a globally
optimal solution concerning all neighborhoods.

The VNS for the problem has the following main steps: to create an initial solution,
which is the current solution; to obtain a neighbor solution of the current solution by
using a neighborhood operator (shake-phase); to perform a local search on the neighbor
solution (local-search-phase); and, to accept the solution of the local search if it is better
than the current solution, besides updating the current solution. If the current solution is
updated, the VNS restarts from the first neighborhood; otherwise, it proceeds to the next
neighborhood, repeating the steps above until reaching the last neighborhood [9, 10].

In the proposed VNS, a solution x is coded as a vector of lists of integers. Each
position of the vector represents a fog node and contains a list of integers with the
sensors. There is another integer indicating which cloud data center is serving the fog
node. A position with an empty list of integers represents a fog node turned off. Notice
the vector has size |F|, and each list of integers has size at most |S|. Moreover, the lists
of integers have a null intersection since a sensor is serviced by exactly one fog node.

The initial solution of the VNS is created as follows. For each fog node, we select
the closest cloud data center to allocate it. For each sensor, we choose the closest fog
node to assign it. If a fog node has already reached the TSLA, no other sensor can be
allocated to it. It means the second closest fog node is used to allocate the sensor, and
so on until all sensors are allocated to fog nodes. Once the initial solution is created, it
has its two objectives calculated: (i) the cost associated with the number of fog nodes
turned on; and (ii) the delay in sensor to fog to cloud transit of data, where the first
objective is used to guide the VNS. We do not accept solutions that violate constraints
(8) to (11) in the optimization process. A solution x′ is better than another x′′ if (i) the



A Variable Neighborhood Heuristic for Facility Locations in Fog Computing 7

first objective of x′ is smaller than that of x′′, or if (ii) the two first objectives are equal
but the second objective of x′ is smaller than the second of x′′.

As the VNS iterates through K neighborhood structures, we propose five structures
based on swap and move operations. In particular:

– N1: select (randomly) a fog node f1, the farthest sensor s1 allocated to f1, the fog
f2 that is the closest to s1, and the sensor s2 allocated to f2 that is the closest to
f1. Hence, swap s1 and s2 from their respective fog nodes, if this new solution is
feasible.

– N2: Let Fon be the set of fog nodes turned on. Compute the load of each fog
node j ∈ Fon as rj = λj/µj and, then, the average load of fog nodes turned on

as: r̄ =
(∑

j∈Fon
rj

)
/|F|. Select (randomly) f1 ∈ Fon whose load r1 > r̄. If

one exists, select the farthest sensor s1 allocated to f1. Then, select the fog node
f2 ∈ Fon with the lowest load r2 and closest to s1. Remove s1 from f1 and move
it to f2, if this new solution is feasible.

– N3: Let Fon be the set of fog nodes turned on. Select (randomly) a fog node f1 ∈
Fon. Compute the average load with all sensors and fog nodes turned on, except
f1, as: r̃ =

(∑
i∈S λi

)
/
(∑

j∈Fon\{f1} µj

)
. If r̃ < 1, then for each sensor s1

allocated to f1, remove s1 from f1 and move it to the closest fog node inFon\{f1},
if this new solution is feasible.

– N4: Let Fon be the set of fog nodes turned on. Let Foff be the set of fog nodes
turned off. If Foff is not empty, select (randomly) a fog node f1 ∈ Foff . Select
the fog node f2 ∈ Fon whose average response time is the highest one. Remove
all sensors from f2 and move them to f1, then turning off f2, if this new solution is
feasible.

– N5: if the number of available cloud data centers is greater than one, select (ran-
domly) a fog node turned on and allocate it to the closest cloud data center, if this
new solution is feasible.

Regarding the shake-phase of the VNS, the selection of fog nodes in the neigh-
borhood structures occurs randomly if the contrary is not imposed. On the other hand,
in the local-search-phase, we use a variable neighborhood descent based procedure, in
which the solution from the shake-phase is passed as the input parameter [9]. In this
procedure, two neighborhood structures are used. It consists of performing all possible
(i) allocations of sensors in fog nodes and (ii) swaps of sensors in fog nodes. The pro-
cedure restarts from the first structure whenever the current solution is improved and
continues until no improved solution can be achieved.

4 Experimental Results

We discuss next the performance of the VNS by evaluating it on a realistic scenario of
fog computing. We start this section with the description of the experimental setup, and
we proceed with the comparison between the performance of the proposed VNS and
other alternatives.
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4.1 Experimental scenario

As a realistic fog computing scenario, we refer to a smart city project developed into
the medium-sized Italian city of Modena (around 180.000 inhabitants). We consider a
smart city application for monitoring car and pedestrian traffic where geographically
distributed sensors collect information comprising data from proximity sensors and
possibly low-resolution images. In our scenario, sensors are wireless devices located
in the city’s main streets: the location of the sensors is obtained by geo-referencing the
selected streets. The sensors send the collected data to the fog nodes, which in turn
perform pre-processing tasks by filtering the proximity sensor readings and, if avail-
able, analyze images from the camera to detect cars and pedestrians. We assume the fog
nodes to be located in government buildings. The pre-processed data are then sent to a
cloud data center located on the municipality premises.

In the performed experiments, we consider sensors equipped with long-range wire-
less connectivity, for example, LoRaWAN4 or IEEE 802.11ah/802.11af [11]. Hence,
the sensors can potentially connect to every fog node: we assume that the network de-
lay depends on the physical distance between two nodes as in [3,4], due to the growing
delay and decreasing bandwidth limitations as the distance from a sensor to the fog
node increases. Specifically, we model the communication latency through the Haver-
sine distance, starting from a given latitude and two locations’ longitude.

In the experimental evaluation, we consider scenarios of different sizes to under-
stand the proposed method’s capability to scale with growing numbers of sensors and
fog nodes. Specifically, we consider a number of sensors |S| ∈ {50, 100, 200}, and a
number of fog nodes |F| ∈ {5, 10, 20}.

We consider different scenarios, each of them described by three main parameters.
First, the sensor data rate λ. Based on a preliminary evaluation of smart city applica-
tions for traffic monitoring, we consider that each sensor provides a reading every 10
seconds; hence, the data rate λi = 0.1, ∀i ∈ S. Second, the average utilization of the
system ρ, that can be defined as

∑
i∈S λi∑
j∈F µj

. For this parameter, we consider a wide range

of values: ρ ∈ {0.1, 0.2, 0.5, 0.8, 0.9}. For each value of ρ, considering sensors and fog
nodes homogeneous and knowing the value of λi, we derive the value of µj = µ, which
is assumed the same for each j ∈ F . Third, the parameter δµ, defining the CPU-bound
or network-bound nature of the scenario and expressed as the ratio between the average
network delay δ and the average service time of a request (1/µ). For this parameter
we consider values ranging multiple orders of magnitude: δµ ∈ {0.01, 0.1, 1, 10}. In
this way, we can explore both CPU-bound scenarios (e.g., when δµ = 0.01), where
computing time is much higher than transmission time, and network-bound cases (e.g.,
when δµ = 10). We derive the average network delay from the δµ parameter and the
previously computed parameter µj . It is worth noticing that, even if our analysis may
consider very high network delays, these scenarios can still be considered realistic if
we consider that the network contribution may involve the transfer of images over low-
bandwidth links.

The evaluation of the proposed model considers a wide range of different scenarios
related to the introduced parameters. Each scenario is named according to the format

4 https://lora-alliance.org/
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ins-ρ-δµ (e.g., instance ins-0.1-0.01 indicates the scenario with ρ = 0.1 and δµ = 0.01).
Moreover, for the SLA in Eq. (15), the constant K is set to 10, which is a typical value
in the literature [1]. Finally, we assume the cost cj of a fog node at position j equal to 1,
for all j ∈ F . This means that the fog nodes are equal from the operating cost point of
view, and the objective function will try to reduce the overall number of active nodes.
For the experimental comparison, we evaluate the following three models:

– Simplified model (SM): this is the simplified version of the problem described in
Section 2 and presented for the first time in [3]. In this model, all fog nodes are
assumed on, that is Ej = 1,∀j ∈ F . The energy consumption may be high, but
the infrastructure provides good performance from a response time point of view
(Eq. (7));

– Complex model (CM): this is the problem described in Section 2 that aims to mini-
mize both energy consumption in Eq. (6) and response time in Eq. (7);

– Proposed model (VNS): this is the heuristic introduced in this study and described
in Section 3;

For the Simplified and Complex models’ numeric results, we rely on LocalSolver5

version 9.0, with a time limit of 300 seconds (5 minutes) as a stopping criterion. Local-
Solver is a general mathematical programming solver that hybridizes local and direct
search, constraint propagation and inference, linear and mixed-integer programming,
and nonlinear programming methods. It can handle multi-objective problems, where
the objectives are optimized in the order of their declaration in the model. For the sake
of fairness, we run the proposed VNS heuristic for 300 seconds or 3000 iterations (the
first to reach stops the VNS).

4.2 Performance evaluation

The comparison between the models performance considers two main metrics: the cost
related to the number of turned on fog nodes, namely Obj1, corresponding to Eq. (6);
and, the average response time,Obj2, corresponding to Eq. (7). To facilitate the compar-
ison between models, we also consider a deviation measure expressing the performance
of a model with respect to an alternative one. Specifically, the deviation function of a
model M1 with respect to a model M2 is considered for each objective function (Obj1
and Obj2), which is defined as:

ε(ObjM1
1 ) =

ObjM1
1 −ObjM2

1

ObjM2
1

(16)

ε(ObjM1
2 ) =

ObjM1
2 −ObjM2

2

ObjM2
2

(17)

In Table 2, we present the complete results for the scenario with 100 sensors and 10
fog nodes since the others follow the same tendency. The table also shows the number of
iterations required by LocalSolver and VNS to reach the reported values. Despite that,
we focus the analysis on the deviation measure previously introduced to compare the
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Table 2: Results for 100 sensors and 10 available fog nodes.
Simplified Model Complex Model (Dev. CM vs. SM) VNS (Dev. VNS vs. CM)

Instances Iter. Obj1 Obj2 Iter. Obj1 Dev. (%) Obj2 Dev. (%) Iter. Obj1 Dev. (%) Obj2 Dev. (%)

ins-0.1-0.01 23655 10 0,1163 52421 2 -80,00 0,2337 100,96 1 2 0,00 0,2332 -0,23
ins-0.1-0.1 31809 10 0,1544 50876 2 -80,00 0,5520 257,45 1 2 0,00 0,5305 -3,90
ins-0.1-1 29173 10 0,5219 61189 2 -80,00 3,7795 624,22 1 2 0,00 3,2555 -13,86
ins-0.1-10 36088 10 4,1912 31853 6 -40,00 8,6976 107,52 1 3 -50,00 17,9568 106,46
ins-0.2-0.01 26833 10 0,2613 25242 3 -70,00 0,6482 148,07 1 3 0,00 0,6443 -0,61
ins-0.2-0.1 19049 10 0,3429 30661 3 -70,00 1,0125 195,30 6 3 0,00 1,0125 0,00
ins-0.2-1 28671 10 1,0829 33141 3 -70,00 4,9492 357,05 4 3 0,00 4,5140 -8,79
ins-0.2-10 38641 10 8,4215 46185 3 -70,00 45,6711 442,31 1 3 0,00 38,9263 -14,77
ins-0.5-0.01 39481 10 1,0300 13903 6 -40,00 3,1153 202,46 1 6 0,00 3,1148 -0,01
ins-0.5-0.1 24610 10 1,2825 15566 6 -40,00 3,5829 179,37 176 6 0,00 3,5344 -1,35
ins-0.5-1 21598 10 3,3132 7802 7 -30,00 5,9867 80,70 86 6 -14,29 8,1437 36,03
ins-0.5-10 25093 10 21,9581 10851 7 -30,00 34,4636 56,95 315 6 -14,29 44,9171 30,33
ins-0.8-0.01 52087 10 4,0480 11032 9 -10,00 8,3199 105,53 40 9 0,00 8,3160 -0,05
ins-0.8-0.1 51989 10 4,4799 14790 9 -10,00 8,8266 97,03 295 9 0,00 8,7628 -0,72
ins-0.8-1 38901 10 8,7654 14729 9 -10,00 13,1785 50,35 305 9 0,00 13,2132 0,26
ins-0.8-10 32297 10 44,1912 7335 9 -10,00 60,2917 36,43 455 9 0,00 63,1833 4,80
ins-0.9-0.01 57507 10 9,0540 11832 10 0,00 9,0540 0,00 16 10 0,00 9,0540 0,00
ins-0.9-0.1 45581 10 9,5399 15801 10 0,00 9,5399 0,00 20 10 0,00 9,5399 0,00
ins-0.9-1 54009 10 14,3987 10055 10 0,00 14,3987 0,00 16 10 0,00 14,3987 0,00
ins-0.9-10 50609 10 62,9869 12502 10 0,00 62,9869 0,00 50 10 0,00 62,9869 0,00

models. Specifically, we consider the CM model’s deviation to the SM and the deviation
of the VNS to the CM.

In comparing the CM model with the SM, we note that the differences strongly
depend on ρ. On the one hand, the SM model uses all the available fog nodes, even
if, especially when ρ is low, the processing of sensors data may require just a fraction
of the computational infrastructure power. On the other hand, the system load has a
significant impact on the number of fog nodes used by the CM model. For low values
of ρ, indeed, the deviation onObj1 shows a reduction of the costs related to the activated
fog nodes up to 80%. A higher number of active fog nodes can provide lower response
time, as testified by the CM’s positive deviation versus the SM on Obj2. While in the
SM model, we have an abundance of computational power due to all fog nodes’ use,
the CM uses the minimum amount of resources to satisfy the SLA constraint to reduce
costs effectively.

Figures 2a and 2b have the deviation of the VNS with respect to the CM model
in terms of cost (ε(ObjV NS1 ) and response time (ε(ObjV NS2 )), respectively. Data are
represented as heat maps, with red hues when the solution performs worse than the CM
model, white color when the performances are similar, and blue hues in the opposite
case.

Focusing on ε(ObjV NS1 ) in Fig. 2a, we observe how the VNS achieves equal or
better performance for the CM model in every considered scenario. In all white areas of
the chart, the number of nodes used by the VNS is the same concerning the CM model
(see third and fourth columns of Table 2). Moreover, we observe that in some Network-
bound scenarios (e.g., for ρ = 0.1 and δµ = 1 as well as ρ = 0.5 and δµ ∈ {1, 10})

5 http://www.localsolver.com
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Fig. 2: Deviation between the VNS and CM model.

the VNS allows a further reduction of fog nodes concerning the CM model, which
decreases the costs up to the 50% in case of low system load (ρ = 0.1). The results of
ε(ObjV NS2 ) in Fig. 2b show that the VNS can reduce the response times in scenarios
where the number of turned on fog nodes is the same as the CM model (blue areas in
Fig. 2b corresponding to white areas in Fig. 2a) thanks to a more optimized mapping
between sensors data flow and fog nodes. This can be explained by the fact that the
CM, in the time limit of 300 seconds, could not reach such an optimized mapping as
the proposed VNS. On the other hand, we observe some red areas corresponding to the
scenarios where the number of fog nodes activated by the VNS is lower concerning the
CM model: in this case, as expected, the response time increased, but it remains within
the defined SLA. The effect is particularly evident for the scenario with ρ = 0.1 and
δµ = 1, where the VNS presents an increase in response times. Still, it can achieve a
very significant reduction (50%) of the required fog nodes.
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We also present two sensitivity evaluations of the proposed VNS. First, we consider
a varying number of sensors |S| while keeping constant the number of fog nodes |F| =
100 in Fig. 3a. Second, we evaluate how the performance changes for different sizes of
scenarios, keeping constant the ratio between sensors and fog nodes (|S| = 10 · |F|)
and varying the number of sensors (|S| ∈ {50, 100, 200}) in Fig. 3b.
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Fig. 3: Sensitivity analysis of the VNS.

The results of the first sensitivity analysis are presented in Fig. 3a. They show the
deviation of the VNS concerning the CM model in terms of costs (Obj1) and response
time (Obj2) for different numbers of fog nodes, where |F| varies from 5 to 10 up to
20, and the number of sensors |S| is fixed to 100. For each case, we evaluate scenarios
defined by different values of ρ and δµ. These parameters’ values have been chosen
among the more interesting points that emerged in the previous analysis. These are the
points where the VNS behaves differently from the CM model. We observe that for a
network-bound scenario with low system load (ρ = 0.1 and δµ = 10), the VNS can
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significantly reduce the costs due to turn on fog nodes for every number of sensors, with
an increase of the response times that remain within the SLA. As ρ increases, we note a
different behavior depending on the number of fog nodes available. If this number is low
(|F| = 5), the VNS activates all the fog nodes as the CM model; however, it achieves
in some cases (ρ = 0.5) a reduction of the response time thanks to better mapping of
sensor data flows on the fog nodes. For a higher number of fog nodes (|F| = 10, 20),
the VNS can reduce the number of required fog nodes with a low increase in the average
response time.

The second sensitivity analysis is presented in Fig. 3b, where we consider systems
with the ratio between the number of sensors and fog nodes fixed to 10. This analysis
confirms the conclusions of the previous one, which is our proposal’s stability concern-
ing different scenarios. Also, in this case, the most significant gain in terms of required
fog nodes is achieved for low system loads (ρ ∈ {0.1, 0.2}) and bigger sizes of the
infrastructure (|F| ∈ {10, 20}). In the smallest scenario, (|S| = 50 and |F| = 5), it is
interesting to note that, in three scenarios out of four, the VNS can reduce the response
time while using the same number of fog nodes concerning the CM model. Further-
more, in the largest scenario, (|S| = 200 and |F| = 20), the VNS can significantly
reduce the number of required fog nodes without increasing the response time.

5 Concluding Remarks

The facility location problem related to the management of a fog infrastructure is inves-
tigated in this work. Specifically, we propose a VNS to solve the optimization problem
of mapping sensors data flows to the fog nodes to reduce costs and response time. A
qualifying point of our proposal is that starting from a list of potential fog nodes, it
selects a minimal subset of them to guarantee the satisfaction of a service level agree-
ment.

We test the proposed heuristic against alternative models from the literature. The
VNS is evaluated in a realistic scenario of a smart city application over a wide range of
scenarios characterized by different load intensities and varied nature of the application
(network-bound vs. CPU-bound). The experiments show that the VNS outperforms the
best alternative model in 13 out of 20 instances, finding equivalent or very close so-
lutions in the other seven. Moreover, we perform two sensitivity analyses concerning
infrastructure size.

From the sensitivity analysis, we conclude that the VNS has a very stable behav-
ior for varying the size of the considered fog infrastructure and smart city application
characteristics. In each scenario, the proposed VNS had equal or better performance
concerning a state-of-the-art solver in optimizing the mapping of sensor data flows and
fog nodes. It reduced the costs due to the turned-on fog nodes keeping the response time
within the SLA limits.

In future works, we plan to extend the VNS to handle the fog nodes’ heterogeneity
and dynamic scenarios in which the load can change through time.
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