Skip to main content

A Multi-objective Pigeon-Inspired Optimization Algorithm Based on Decomposition

  • Conference paper
  • First Online:
  • 1570 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1339))

Abstract

Multi-objective evolutionary algorithms based on decomposition (MOEA/Ds) convert a multi-objective optimization problem (MOP) into a set of scalar sub-problems, which are then optimized collaboratively. This paper designs a multi-objective pigeon-inspired optimization algorithm based on decomposition (MPIO/D) to improve the search efficiency by using the mechanism behind the remarkable navigation capacity of homing pigeons. The map and compass operator can record the direction of descent (rising) to generate good offspring. The landmark operator is used to accelerate the convergence of sub-problems with poor convergence. Compared to six competitive MOEA/Ds, MPIO/D has shown the advantages in tacking two benchmark sets of MOPs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gary, B.: Lamont Evolutionary Algorithms for Solving Multi-objective Problems. Springer, US (2007)

    Google Scholar 

  2. Zhang, Z., Liu, S., Gao, W., Xu, J., Zhu, Q.: An enhanced multi-objective evolutionary optimization algorithm with inverse model. Inform. Sci. 530, 128–147 (2020)

    Article  MathSciNet  Google Scholar 

  3. He, L., Shang, K., Ishibuchi, H.: Simultaneous use of two normalization methods in decomposition-based multi-objective evolutionary algorithms. Appl. Soft Comput. 92, 106316 (2020)

    Article  Google Scholar 

  4. Tian, Y., Cheng, R., Zhang, X., et al.: An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 99, 1 (2017)

    Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  6. Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)

    Article  Google Scholar 

  7. Corne, D., Jerram, N., Knowles, J., Oates, M., Martin, J.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the Genet. Evolutionary Computation Conference, pp. 283–290 (2001)

    Google Scholar 

  8. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. in Evolutionary Methods for Design. Optim. Control, pp. 95–100 (2002)

    Google Scholar 

  9. Elarbi, M., Bechikh, S., Gupta, A., et al.: A new decomposition-based NSGA-II for many-objective optimization. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–20 (2017)

    Google Scholar 

  10. Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  11. Jiang, S., Yang, S.: An improved multi-objective optimization evolutionary algorithm based on decomposition for complex Pareto fronts. IEEE Trans. Cybern. 46(2), 421–437 (2016)

    Article  Google Scholar 

  12. Elarbi, M., Bechikh, S., Gupta, A., Said, L.B., Ong, Y.-S.: A new decomposition-based NSGA-II for many-objective optimization. IEEE Trans. Syst. Man, Cybern. Syst. 48(7), 1191–1210 (2018)

    Google Scholar 

  13. Wang, L., Zhang, Q., Zhou, A.: Constrained subproblems in a decomposition-based multi-objective evolutionary algorithm. IEEE Trans. Evol. Comput. 20(3), 475–480 (2016)

    Article  Google Scholar 

  14. Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multi-objective optimization problem into a number of simple multi-objective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)

    Article  Google Scholar 

  15. Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2015)

    Article  Google Scholar 

  16. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  17. Asafuddoula, Md., Singh, H.K., Tapabrata, R.: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors. IEEE Trans. Cybern. 48(8), 2321–2334 (2017)

    Google Scholar 

  18. Lin, H., Chen, L., Zhang, Q., Deb, K.: Adaptively allocating search effort in challenging many-objective optimization problems. IEEE Trans. Evol. Comput. 22(3), 433–448 (2018)

    Article  Google Scholar 

  19. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: Optimal μ-distributions and the choice of the reference point. In: Procedings of Foundations of Genetic Algorithm X. 2009, pp. 87–102 (2009)

    Google Scholar 

  20. Zitzler, E., Knzli, S.: Indicator-Based Selection in Multiobjective Search. Lecture Notes in Computer Science, pp. 832–842 (2004)

    Google Scholar 

  21. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multi-objective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  Google Scholar 

  22. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  23. Duan, H.B., Qiao, P.X.: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int J Intell Comput Cybern 7, 2–21 (2014)

    Article  MathSciNet  Google Scholar 

  24. He, J., Liu, Y., Li, S., Tang, Y.: Minimum-fuel ascent of hypersonic vehicle considering control constraint using the improved pigeon-inspired optimization algorithm. Int. J. Aerospace Eng. (2020). https://doi.org/10.1155/2020/3024607

    Article  Google Scholar 

  25. Jiang, F., He, J., Tian, T.: A clustering-based ensemble approach with improved pigeon-inspired optimization and extreme learning machine for air quality prediction. Appl. Soft Comput. 85, 105827 (2020)

    Article  Google Scholar 

  26. Chen, G., Qian, J., Zhang, Z., Li, S.: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem. Appl. Soft Comput. (2020). https://doi.org/10.1016/j.asoc.2020.106321

    Article  Google Scholar 

  27. Chen, L., Duan, H., Fan, Y., Wei, C.: Multi-objective clustering analysis via combinatorial pigeon inspired optimization. Sci. China-Technol. Sci. 63(7), 1302–1313 (2020)

    Article  Google Scholar 

  28. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 825–830 (2002)

    Google Scholar 

  29. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Fonseca, V.: Performance assessment of multi-objective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  30. Robert, S., Torrie, J., Dickey, D.: Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill, New York, NY (1997)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundations of China (no. 61806120, no. 61502290, no. 61401263, no. 61672334, no. 61673251), China Postdoctoral Science Foundation (no. 2015M582606), Industrial Research Project of Science and Technology in Shaanxi Province (no. 2015GY016, no. 2017JQ6063), Fundamental Research Fund for the Central Universities (no. GK202003071), Natural Science Basic Research Plan in Shaanxi Province of China (no. 2016JQ6045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, C. (2021). A Multi-objective Pigeon-Inspired Optimization Algorithm Based on Decomposition. In: Hassanien, AE., Chang, KC., Mincong, T. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2021. Advances in Intelligent Systems and Computing, vol 1339. Springer, Cham. https://doi.org/10.1007/978-3-030-69717-4_86

Download citation

Publish with us

Policies and ethics