Skip to main content

Spatial and Channel Attention Modulated Network for Medical Image Segmentation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 Workshops (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12628))

Included in the following conference series:

Abstract

Medical image segmentation is a fundamental and challenge task in many computer-aided diagnosis and surgery systems, and attracts numerous research attention in computer vision and medical image processing fields. Recently, deep learning based medical image segmentation has been widely investigated and provided state-of-the-art performance for different modalities of medical data. Therein, U-Net consisting of the contracting path for context capturing and the symmetric expanding path for precise localization, has become a meta network architecture for medical image segmentation, and manifests acceptable results even with moderate scale of training data. This study proposes a novel attention modulated network based on the baseline U-Net, and explores embedded spatial and channel attention modules for adaptively highlighting interdependent channel maps and focusing on more discriminant regions via investigating relevant feature association. The proposed spatial and channel attention modules can be used in a plug and play manner and embedded after any learned feature map for adaptively emphasizing discriminant features and neglecting irrelevant information. Furthermore, we propose two aggregation approaches for integrating the learned spatial and channel attentions to the raw feature maps. Extensive experiments on two benchmark medical image datasets validate that our proposed network architecture manifests superior performance compared to the baseline U-Net and its several variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roth, H.R., et al.: Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Med. Image Anal. 45, 94–107 (2018)

    Article  Google Scholar 

  2. Cerrolaza, J.J., Summers, R.M., Linguraru, M.G.: Soft multi-organ shape models via generalized PCA: a general framework. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 219–228. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_26

    Chapter  Google Scholar 

  3. Gibson, E., et al.: Towards image-guided pancreas and biliary endoscopy: automatic multi-organ segmentation on abdominal CT with dense dilated networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 728–736. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_83

    Chapter  Google Scholar 

  4. Saito, A., Nawano, S., Shimizu, A.: Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs. Med. Image Anal. 28, 46–65 (2016)

    Article  Google Scholar 

  5. Bai, W., et al.: Human-level CMR image analysis with deep fully convolutional networks. ArXiv abs/1710.09289 (2017)

    Google Scholar 

  6. Shih, F., Zhong, X.: High-capacity multiple regions of interest watermarking for medical images. Inf. Sci. 367–368, 648–659 (2016)

    Article  Google Scholar 

  7. Sanchez, V.: Joint source/channel coding for prioritized wireless transmission of multiple 3-D regions of interest in 3-D medical imaging data. IEEE Trans. Biomed. Eng. 60, 397–405 (2013)

    Article  Google Scholar 

  8. Raja, J.A., Raja, G., Khan, A.: Selective compression of medical images using multiple regions of interest (2013)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  10. Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical imaging data. CoRR abs/1701.03056 (2017)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Khened, M., Varghese, A., Krishnamurthi, G.: Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers. CoRR abs/1801.05173 (2018)

    Google Scholar 

  13. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017)

    Article  Google Scholar 

  14. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018)

    Article  Google Scholar 

  15. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  16. Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Bi-directional ConvLSTM U-Net with Densley connected convolutions. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 406–415 (2019)

    Google Scholar 

  17. Chen, H., Qi, X., Yu, L., Heng, P.: DCAN: deep contour-aware networks for accurate gland segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2487–2496 (2016)

    Google Scholar 

  18. McKinley, R., et al.: Nabla-Net: a deep dag-like convolutional architecture for biomedical image segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 119–128. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_12

    Chapter  Google Scholar 

  19. Alom, M.Z., Yakopcic, C., Hasan, M., Taha, T., Asari, V.: Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 6, 014006–014006 (2019)

    Article  Google Scholar 

  20. Alom, M., Hasan, M., Yakopcic, C., Taha, T., Asari, V.: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. ArXiv abs/1802.06955 (2018)

    Google Scholar 

  21. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  22. Dou, Q., et al.: 3D deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017)

    Article  Google Scholar 

  23. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  24. Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M., Vercauteren, T.K.M.: On the compactness, efficiency, and representation of 3d convolutional networks: Brain parcellation as a pretext task. ArXiv abs/1707.01992 (2017)

    Google Scholar 

  25. Chen, H., Dou, Q., Yu, L., Heng, P.: VoxResNet: deep voxelwise residual networks for volumetric brain segmentation. ArXiv abs/1608.05895 (2016)

    Google Scholar 

  26. Yang, Z., He, X., Gao, J., Deng, L., Smola, A.J.: Stacked attention networks for image question answering. CoRR abs/1511.02274 (2015)

    Google Scholar 

  27. Pedersoli, M., Lucas, T., Schmid, C., Verbeek, J.: Areas of attention for image captioning. CoRR abs/1612.01033 (2016)

    Google Scholar 

  28. Wang, F., et al.: Residual attention network for image classification. CoRR abs/1704.06904 (2017)

    Google Scholar 

  29. Chen, L., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. CoRR abs/1511.03339 (2015)

    Google Scholar 

  30. Zhao, H., et al.: PSANet: point-wise spatial attention network for scene parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 270–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_17

    Chapter  Google Scholar 

  31. Fu, J., Liu, J., Tian, H., Fang, Z., Lu, H.: Dual attention network for scene segmentation. CoRR abs/1809.02983 (2018)

    Google Scholar 

  32. Li, H., Xiong, P., An, J., Wang, L.: Pyramid attention network for semantic segmentation. CoRR abs/1805.10180 (2018)

    Google Scholar 

  33. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. CoRR abs/1808.00897 (2018)

    Google Scholar 

  34. Zhang, P., Liu, W., Wang, H., Lei, Y., Lu, H.: Deep gated attention networks for large-scale street-level scene segmentation. Pattern Recogn. 88, 702–714 (2019)

    Article  Google Scholar 

  35. Wang, Y., et al.: Deep attentional features for prostate segmentation in ultrasound. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 523–530. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_60

    Chapter  Google Scholar 

  36. Li, C., et al.: Attention based hierarchical aggregation network for 3D left atrial segmentation. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 255–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_28

    Chapter  Google Scholar 

  37. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)

    Article  Google Scholar 

  38. Nie, D., Gao, Y., Wang, L., Shen, D.: ASDNet: attention based semi-supervised deep networks for medical image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 370–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_43

    Chapter  Google Scholar 

  39. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel squeeze & excitation in fully convolutional networks. CoRR abs/1803.02579 (2018)

    Google Scholar 

  40. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. ArXiv abs/1804.03999 (2018)

    Google Scholar 

Download references

Acknowledgement

This research was supported in part by the Grant-in Aid for Scientific Research from the Japanese Ministry for Education, Science, Culture and Sports (MEXT) under the Grant No. 20K11867.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, W., Han, Xh. (2021). Spatial and Channel Attention Modulated Network for Medical Image Segmentation. In: Sato, I., Han, B. (eds) Computer Vision – ACCV 2020 Workshops. ACCV 2020. Lecture Notes in Computer Science(), vol 12628. Springer, Cham. https://doi.org/10.1007/978-3-030-69756-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69756-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69755-6

  • Online ISBN: 978-3-030-69756-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics