Skip to main content

Cell Detection and Segmentation in Microscopy Images with Improved Mask R-CNN

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 Workshops (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12628))

Included in the following conference series:

Abstract

Analyzing and elucidating the attributes of cells and tissues with an observed microscopy image is a fundamental task in both biological research and clinical practice, and automation of this task to develop computer aided system based on image processing and machine learning technique has been rapidly evolved for providing quantitative evaluation and mitigating burden and time of the biological experts. Automated cell/nuclei detection and segmentation is in general a critical step in automatic system, and is quite challenging due to the existed heterogeneous characteristics of cancer cell such as large variability in size, shape, appearance, and texture of the different cells. This study proposes a novel method for simultaneous detection and segmentation of cells based on the Mask R-CNN, which conducts multiple end-to-end learning tasks by minimizing multi task losses for generic object detection and segmentation. The conventional Mask R-CNN employs cross entropy loss for evaluating the object detection fidelity, and equally treats all training samples in learning procedure regardless to the properties of the objects such as easily or hard degree for detection, which may lead to miss-detection of hard samples. To boost the detection performance of hard samples, this work integrates the focal loss for formulating detection criteria into Mask R-CNN, and investigate a feasible method for balancing the contribution of multiple task losses in network training procedure. Experiments on the benchmark dataset: DSB2018 manifest that our proposed method achieves the promising performance on both cell detection and segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anantharaman, R., Velazquez, M., Lee, Y.: Utilizing Mask R-CNN for detection and segmentation of oral diseases. In: IEEE International Conference on Bioinformatics and Biomedicine (2018)

    Google Scholar 

  2. Johnson, J.W.: Automatic nucleus segmentation with Mask-RCNN. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 944, pp. 399–407. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17798-0_32

    Chapter  Google Scholar 

  3. Tan, C., Uddin, N., Mohammed, Y.M.: Deep learning-based crack detection using mask R-CNN technique. In: 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure (2019)

    Google Scholar 

  4. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  5. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  7. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  8. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  9. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. arXiv preprint arXiv:1506.02640 (2015)

  10. Irshad, H.: Automated mitosis detection in histopathology using morphological and multi-channel statistics features. J. Pathol. Inform. 4, 10 (2013)

    Article  Google Scholar 

  11. Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57, 841–852 (2009)

    Article  Google Scholar 

  12. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996)

    Article  Google Scholar 

  13. Weidi, X., Noble, J.A., Zisserman, A.: Microscopy cell counting with fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 6, 283–292 (2018)

    Google Scholar 

  14. Chen, H., Dou, Q., Wang, X., Qin, J., Heng, P.-A.: Mitosis detection in breast cancer histology images via deep cascaded networks. In: AAAI 2016: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1160–1166 (2016)

    Google Scholar 

  15. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  16. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 5, 1313–1321 (2016)

    Article  Google Scholar 

  17. Xue, Y., Ray, N.: Cell detection in microscopy images with deep convolutional neural network and compressed sensing. In: Computer Vision and Pattern Recognition, CVPR (2017)

    Google Scholar 

  18. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30

    Chapter  Google Scholar 

  19. Wahlby, C., Lindblad, J., Vondrus, M., Bengtsson, E., Bjorkesten, L.: Algorithms for cytoplasm segmentation of fluorescence labelled cells. Anal. Cell Pathol.: J. Eur. Soc. Anal. Cell Pathol. 24(2), 101–111 (2002)

    Article  Google Scholar 

  20. Wang, M., Zhou, X., Li, F., Huckins, J., King, R.W., Wong, S.T.C.: Novel cell segmentation and online SVM for cell cycle phase identification in automated microscopy. Bioinformatics 24(1), 94–101 (2008)

    Article  Google Scholar 

  21. Sharif, J.M., Miswan, M.F., Ngadi, M.A., Salam, M.S.H., Bin Abdul Jamil, M.M.: Red blood cell segmentation using masking and watershed algorithm: a preliminary study. In: 2012 International Conference on Biomedical Engineering (ICoBE), pp. 258–262 (2012)

    Google Scholar 

  22. Nath, S.K., Palaniappan, K., Bunyak, F.: Cell segmentation using coupled level sets and graph-vertex coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 101–108. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_13

    Chapter  Google Scholar 

  23. Dzyubachyk, O., Niessen, W., Meijering, E.: Advanced level-set based multiple-cell segmentation and tracking in time-lapse fluorescence microscopy images. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 185–188 (2008)

    Google Scholar 

  24. Dorini, L.B., Minetto, R., Leite, N.J.: White blood cell segmentation using morphological operators and scale-space analysis. In: XX Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI 2007, pp. 294–304 (2007)

    Google Scholar 

  25. Wang, X., He, W., Metaxas, D., Mathew, R., White, E.: Cell segmentation and tracking using texture-adaptive shakes. In: 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 101–104 (2007)

    Google Scholar 

  26. Van Valen, D.A., et al.: Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput. Biol. 12(11), 1–24 (2016). 1005177

    MathSciNet  Google Scholar 

  27. Kraus, O.Z., et al.: Automated analysis of high-content microscopy data with deep learning. Mol. Syst. Biol. 13(4), 924 (2017)

    Article  Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Lugagne, J.-B., Lin, H., Dunlop, M.J.: DeLTA: automated cell segmentation, tracking, and lineage reconstruction using deep learning. PLoS Comput. Biol. 16(4), 1007673 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Grant-in Aid for Scientific Research from the Japanese Ministry for Education, Science, Culture and Sports (MEXT) under the Grant No. 20K11867.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seiya Fujita or Xian-Hua Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fujita, S., Han, XH. (2021). Cell Detection and Segmentation in Microscopy Images with Improved Mask R-CNN. In: Sato, I., Han, B. (eds) Computer Vision – ACCV 2020 Workshops. ACCV 2020. Lecture Notes in Computer Science(), vol 12628. Springer, Cham. https://doi.org/10.1007/978-3-030-69756-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69756-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69755-6

  • Online ISBN: 978-3-030-69756-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics