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Abstract. Sensor-based human activity recognition (HAR) is now a
research hotspot in multiple application areas. With the rise of smart
wearable devices equipped with inertial measurement units (IMUs), re-
searchers begin to utilize IMU data for HAR. By employing machine
learning algorithms, early IMU-based research for HAR can achieve accu-
rate classification results on traditional classical HAR datasets, contain-
ing only simple and repetitive daily activities. However, these datasets
rarely display a rich diversity of information in real-scene. In this paper,
we propose a novel method based on deep learning for complex HAR
in the real-scene. Specially, in the off-line training stage, the AMASS
dataset, containing abundant human poses and virtual IMU data, is in-
novatively adopted for enhancing the variety and diversity. Moreover, a
deep convolutional neural network with an unsupervised penalty is pro-
posed to automatically extract the features of AMASS and improve the
robustness. In the on-line testing stage, by leveraging advantages of the
transfer learning, we obtain the final result by fine-tuning the partial
neural network (optimizing the parameters in the fully-connected layers)
using the real IMU data. The experimental results show that the pro-
posed method can surprisingly converge in a few iterations and achieve
an accuracy of 91.15% on a real IMU dataset, demonstrating the effi-
ciency and effectiveness of the proposed method.

Keywords: Human Activity Recognition · Inertial Measurement Units
· Deep Convolutional Neural Network · Unsupervised Penalty · Transfer
Learning.

1 Introduction

Human activity recognition (HAR) is a research hotspot in the field of computer
vision and has broad application prospects in security monitoring, biological
health, and other fields. Traditional recognition algorithms are mainly based on
images or videos [19]. With the emergence of various wearable smart devices
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embedded with microsensors such as inertial measurement units (IMUs), these
devices are highly used in daily life and play an indispensable role in emerging
fields that strongly demand HAR such as virtual reality (VR). Therefore, it is a
natural way to realize HAR based on wearable devices.

In recent years, HAR based on wearable devices has been conducted deep
studies [17], and there exist two general methods. Previous researches use tra-
ditional machine learning methods such as Support Vector Machine (SVM) and
Random Forest (RF) to receive the recognition result [13, 14]. However, these
methods need to to design features manually, calculate time and frequency do-
main features based on characteristics of the data. To reduce the computational
consumption and compress input data, a further selection of features also needs
to be conducted. Due to the longtime design and selection of manual features,
it always costs lots using traditional methods of machine learning. With the
development of deep learning in recent years, deep neural networks such as Con-
volutional Neural Network (CNN) [16] or Long Short-Term Memory networks
(LSTM) [3] have been widely used for HAR, finishing both feature extraction
and activity classification.

Almost all the above methods now can achieve excellent results on specific
sensor-based HAR datasets. The widely used public datasets and their main
characteristics are shown in Table 1.

Table 1. Widely used public datasets and main characteristics (Acc=accelerometer,
Gyro=gyroscope, Mag=Magnetometer, Temp=Temperature).

Datasets Sampling Rate (Hz) Sensors Activities Subjects

UCI HAR [1] 50 2 (Acc, Gyro) 6 30
WISDM [8] 20 1 (Acc) 7 36
WHARF [2] 32 1 (Acc) 12 17

PAMAP2 [15] 100 4 (Acc, Gyro, Mag, Temp) 18 9

However, all these datasets have defects as follows:

– The most widely used datasets such as UCI HAR [1] contain only simple daily
activities, for example, walking, running or jumping, while human behaves
much more complex in real life.

– Subjects involved in data collection are always limited, and the same activ-
ity tends to be performed similarly, for instance, walking may only include
walking at normal speed. However, the same activity can be performed in
different styles and may vary with different humans in the real world.

– During data collection, most datasets use only a single IMU, which makes
them unsuitable for recognizing more elaborate activities such as stretching
arms or stretching legs. Though other datasets use more than two IMUs, the
increase in IMUs also leads to the intrusion to subjects.
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To solve problems above, this paper innovatively adopts a pose reconstruction
dataset AMASS [10], which is a large collection of motion capture (Mocap)
datasets, for HAR. The adoption of this dataset has the following advantages:

1. AMASS contains rich motion types. It includes complex activities such as
house cleaning in addition to simple daily activities, making this dataset
closer to real life.

2. The containing of multiple mocap datasets in AMASS leads to both richer
characteristics in activities and an increase in the number of involved sub-
jects, which is more than 300.

3. Inspired by [6], where virtual IMU data are innovatively used in pose recon-
struction, we similarly use virtual IMU for HAR, which greatly reduces the
cost of collecting real datasets.

The main contributions of this paper are as follows:

- Adopt a novel pose reconstruction dataset AMASS for HAR and use virtual
IMU data in this dataset.

- Use a realistic dataset to fine-tune the model for further reducing the gap
between real and virtual data.

- Propose a CNN framework combined with an unsupervised penalty for HAR.

Experimental results show that test result on the realistic dataset is 91.15%
after fine-tuning, which demonstrates the feasibility of applying pose recognition
datasets and using virtual IMU data for HAR.

2 Dataset preprocessing based on the SMPL model

One major work of this paper is the processing of AMASS, making it suitable
for HAR. Since the IMU data in AMASS is virtual, this paper further processes
the DIP dataset proposed in [6], which contains real IMU data that can be used
to reduce the gap between virtual data and real data.

2.1 SMPL model

SMPL [9] is a parameterized model of the 3D human body, totally including
N = 6890 vertices, K = 23 joints. Input parameters of this model are shape
parameters β, which takes 10 values controlling the shape change of the human
body, and pose parameters θ that takes 72 values which define the relative angles
of 24 joints (including the root joint) of the human body:

M(β, θ) = W (TP (β, θ), J(β),θ,W ), (1)

TP (β, θ) = T +Bs(β) +Bp(θ), (2)

where T defines a template mesh, to which pose-dependent deformations Bs(β)
and shape-dependent deformations Bp(θ) are added. Based on the rotation
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around the predicted joint locations J(β) with smoothing defined by the blend
weight matrix W , the resulting mesh is then posed using a standard linear skin-
ning function (LBS).

Using this model, AMASS converts the motion poses of several classical mo-
tion capture datasets such as Biomotion [18], from a skeletal form to a more
realistic 3D skin model, while the pose parameters are given as a rotation ma-
trix.

2.2 Virtual data generation

Though AMASS contains the input parameters of the SMPL model, it does
not contain IMU data as original mocap datasets do not provide IMU data. To
use AMASS for sensor-based pose reconstruction, [6] confirms the feasibility of
synthesizing IMU data and generating corresponding SMPL parameters based
on the input of different models.

Based on the rich information provided by AMASS, virtual acceleration data
and orientation readings in the rotation matrix can be generated by placing
virtual sensors on the SMPL mesh surface. Orientation readings are directly
obtained using forward kinematics, while virtual accelerations are calculated via
finite differences [6]. The virtual acceleration for time t is defined as:

at =
pt−1 + pt+1 − 2 · pt

dt2
, (3)

where pt is the position of a virtual IMU for time t, and dt is the time interval
between two consecutive frames.

2.3 Labeling and filtering with SMPL model

Since AMASS contains over 11000 motions, it is necessary to classify these mo-
tions into different activities and make true labels. Further, a single motion file
in AMASS may consist of several activities, so it is also essential to filter out
some motions that affect the balance of the dataset. Activity labeling and data
filtering are mainly achieved through three steps.

Posture-based labeling We first classify the whole motions in AMASS into 12
categories based on the superficial descriptions of motions in most classical mo-
cap datasets included in AMASS. Two types of motions are directly removed in
this procedure. The first type is motions with little relevance to human daily ac-
tivities, such as boxing and other martial motions described in Biomotion [18].
The second type refers to some frequently converted motions(e.g. quick tran-
sitions between walking, stopping and running). Since the motion duration is
generally short in AMASS, frequent motion transitions may conflict with the
subsequent sliding window length settings, therefore such motions are also ex-
cluded.
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Acceleration-based filtering A simple classification of the dataset is imple-
mented in the previous section, while some data are further filtered based on
accelerations. Using the accelerations obtained via the sensor on the wrist, a
dynamic graph of the acceleration over time can be created. The accelerations
at the left wrist for typical walking and running movements are shown in Fig. 1
and Fig. 2.

As can be seen from the comparison of Fig. 1 and Fig. 2, different activities of-
ten differ in acceleration characteristics. Therefore, data is further cleaned based
on the differences in the characteristics of acceleration (e.g. peaks, variances,
etc.).

Fig. 1. Wrist accelerations for typical
walking movement

Fig. 2. Wrist accelerations for typical
running movement

Data cleaning with SMPL model For some activities whose acceleration
characteristics are not obvious, such as the stretching of the arms, it almost fails
using acceleration features to clean the dataset. However, since AMASS provides
SMPL pose parameters in the form of the rotation matrix, it becomes feasible
to filter this type of activity adopting visualization with the SMPL model.

After using Unity to build the SMPL model, the motions can be visualized
by passing in different SMPL pose parameters. Clapping motion and motion of
waving arms are shown in Fig. 3 and Fig. 4 respectively. After visualization of
such data, mislabeled motions can be successfully deleted.

However, preprocessed AMASS still suffers the problem of extremely unbal-
anced activities after processing above, which is mainly caused by unbalanced
motions in the original AMASS. To alleviate this problem, interpolation up-
sampling is adopted in this paper.

3 Deep learning algorithm and fine-tuning

3.1 Proposed method

The proposed method includes two stages: the off-line training stage and the
on-line testing stage. At the first stage, we firstly employ the AMASS dataset,
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Fig. 3. Visualization for clapping
movement

Fig. 4. Visualization for waving move-
ment

containing abundant human poses, to enhance the variety and diversity of the
real data.

Motivated by the pioneer works [5,7], a deep convolutional neural network (U
convolutional layers and S fully-connected layers) with an unsupervised penalty
(U deconvolutional layers) is proposed to automatically extract the features

of AMASS. Specially, given p-th batch IMU data X(p) and the related labels
Z(p), the proposed method tries to update the neural network parameters Θ =
Θ0 ∪Θ1={Wk}k=1,2,··· ,2U+S by minimizing

argmin
Θ

L0 (Θ0)︸ ︷︷ ︸
supervised

+λ L1 (Θ1)︸ ︷︷ ︸
unsupervised penalty

, (4)

where

L0 (Θ0) =
∥∥∥Z(p) − ϕS

(
WSX̃(p)

)∥∥∥2
2
,

X̃(p) = ϕU

(
WU · · ·ϕ1

(
W1X

(p)
))

,

L1 (Θ1) =
∥∥∥X(p) − ϕ2U

(
W2U · · ·ϕU+1

(
W1X̃

(p)
))∥∥∥2

2
,

ϕ is the activation function of the i-th layer, and λ is the penalty parameter that
balances L (Θ0) and L1 (Θ1). We use an unsupervised penalty to promote the
generalization of the proposed method by considering:

– In our case, by optimizing L0 (Θ0), we try to represent X(p) of high-dimension
by the latent layer of low-dimension (X̃(p)). Such an operation, considering
the low dimensionality of the IMU data, is helpful for the key feature ex-
traction.

– The unsupervised penalty in (4) itself is a denoising autoencoder [7] that
can help denoising the AMASS dataset, enhancing the robustness of the
proposed method.

– It has been shown in previous studies that learning multi-task (i.e., L0 (Θ0)
and L1 (Θ0)) jointly can improve the generalization error bounds [4, 11].
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3.2 Fine-tuning with real IMU

Since IMU data in AMASS is virtually generated via the SMPL model and
virtual sensors, while the IMU data in the real world tends to be affected by
environmental noise, electromagnetic waves, etc. Therefore, certain differences
exist between virtual and real data. To eliminate the gap, this paper uses the DIP
dataset with real IMU data provided in [6] for fine-tuning. Data processing of DIP
is similar to AMASS, except the fact that DIP only contains 5 activities, namely
“computer works”, “walking”, “jumping”, “stretching arms” and “stretching
legs”. Meanwhile, DIP has rather balanced activity categories, therefore up-
sampling is not performed on DIP.

Following the off-line training stage in Section 3.1, at the on-line testing stage,
by leveraging advantages of the transfer learning, we obtain the final result by
fine-tuning the parameters in the fully-connected layers with the real IMU data.

4 Test Verification

This paper innovatively adopts a pose reconstruction dataset AMASS with vir-
tual IMU data for HAR and proposes a new CNN framework with an unsuper-
vised penalty. We design several comparative experiments, to prove the feasibility
of using pose reconstruction dataset for HAR.

To further verify the rationality of the method proposed in this paper, both
classical machine learning algorithms and deep learning algorithms are tested on
AMASS and DIP. Taking the sequence length in AMASS into consideration, this
paper finally adopts RF and DeepConvLSTM [12] algorithms for comparisons.
For RF we directly input the processed data for classification, while we adopt
the original DeepConvLSTM architecture for comparison.

4.1 Experimental design

Three groups of comparative experiments based on different datasets are de-
signed. Experiment 1 conducts training and testing on AMASS, using all three
algorithms. The ratio of the training set to the test set is 7:3. Experiment 2
conducts training and testing on DIP and adopts all three algorithms similar to
experiment 1. Experiment 3 is trained on the AMASS training set, fine-tuned on
the DIP training set and finally tested on the DIP test set. Only our proposed
method and DeepConvLSTM are involved in experiment 3.

Considering that some activities cannot be identified using only one IMU,
three IMUs located at the left wrist, the right thigh, and the head are selected
in this paper. The total input data have features in 36 dimensions, including
three-axis acceleration and rotation matrix. Since the sampling rates of AMASS
and DIP are both 60Hz, a sliding window with 60 frames (i.e. 1 second) length
is selected, while the degree of overlapping is set as 50%.
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4.2 Evaluation criteria

Commonly used evaluation criteria in HAR are accuracy, recall, F1-score and
Area Under the Curve (AUC), among which accuracy and F1-score are most
commonly used. Therefore, we also adopt accuracy and F1-score as the perfor-
mance measures:

Accuracy =

∑CN
cn=1 TPcn +

∑CN
cn=1 TNcn∑CN

cn=1 TPcn +
∑CN
cn=1 TNcn +

∑CN
cn=1 FPcn +

∑CN
cn=1 FNcn

, (5)

F1− score =
2
∑CN
cn=1 TPcn

2
∑CN
cn=1 TPcn +

∑CN
cn=1 FPcn +

∑CN
cn=1 FNcn

, (6)

where CN denotes the class number. Variables TPcn, FPcn, TNcn, FNcn are
the true positives, false positives, true negatives and false negatives of the class
cn , respectively.

4.3 Experimental results and analysis

Table 2 illustrates all results in three experiments. From the results on the
AMASS dataset in Table 2, we can see that all three algorithms can achieve
accuracy over 70%, despite the fact that IMU data in AMASS is virtual and
the containing of complex activities composed of several motions. Results on
the DIP dataset in Table 2 corresponds to the results of experimen2, comparing
three algorithms on a realistic IMU dataset DIP. We can see that the proposed
method outperforms DeepConvLSTM and RF on both AMASS and DIP, which
strongly illustrates the rationality of the deep learning algorithm proposed in
this paper.

Table 2. Experimental results

Dataset
Methods & results

Proposed method DeepConvLSTM RF
Acc F1-score Acc F1-score Acc F1-score

AMASS 87.46% 86.50% 73.03% 72.43% 75.01% 70.00%
DIP 89.08% 89.16% 78.33% 79.31% 77.25% 75.96%

AMASS & DIP 91.15% 91.21% 84.80% 85.12% \ \

Notice that the classification result on DIP is not as good as the classification
result of DeepConvLSTM and RF on classical HAR datasets. The main reason
is that although DIP only contains 5 activities, similar to AMASS, each activity
may be composed of a variety of motions, such as activity stretching legs which
includes two motions, leg raising, and stepping. Activities with multiple motions
greatly increase the difficulty of classification.

To confirm gaps between virtual IMU data and real IMU data, we addition-
ally use the proposed network trained on AMASS to finish the classification
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task on DIP, an unsurprising result of accuracy less than 50% is obtained. While
the network trained based on AMASS and fine-tuned on the DIP training set
achieves the best performance on the DIP test set, both for the proposed method
and DeepConvLSTM. The results confirm that fine-tuning indeed eliminates the
gap between the virtual IMU and the real IMU to some extent.

We also show the confusion matrix figures of the proposed method in experi-
ment 2 experiment 3. As Fig. 5 and Fig. 6 show, fine-tuning effectively improves
the classification results of some categories in DIP, which is mainly caused by
richer motions in AMASS that make it easier to distinguish some confusing ac-
tivities. Another interesting thing to be noticed is that fine-tuning can achieve
rather excellent results within 20 epochs. This also provides a way for future
research, that is, training on large-scale virtual IMU datasets, only need for a
small scale of datasets with real IMU data for fine-tuning, which will reduce the
cost of collecting real data.

Fig. 5. Confusion matrix of DIP in exper-
iment 2

Fig. 6. Confusion matrix of DIP in exper-
iment3

5 Conclusion

This paper innovatively adopts a pose reconstruction dataset AMASS for HAR
for the problem of simple daily activities and limited subjects in classical datasets.
At the same time, a pose reconstruction dataset DIP with real IMU data is used
for fine-tuning, to reduce the gap between virtual IMU data and real IMU data.
Future work can focus on the most suitable IMU configurations through more
detailed experiments.
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